A pilot-scale CFIC® (continuous flow intermittent cleaning) reactor was run in anoxic conditions to study denitrification of wastewater. The CFIC process has already proven its capabilities for biological oxygen demand removal with a small footprint, less energy consumption and low cost. The present study focused on the applicability for denitrification. Both pre-denitrification (pre-DN) and post-denitrification (post-DN) were tested. A mixture of primary treated wastewater and nitrified wastewater was used for pre-DN and nitrified wastewater with ethanol as a carbon source was used for post-DN. The pre-DN process was carbon limited and removal rates of only 0.16 to 0.74 g NOx-N/m²-d were obtained. With post-DN and an external carbon source, 0.68 to 2.2 g NO3-Neq/m²-d removal rates were obtained. The carrier bed functioned as a good filter for both the larger particles coming with influent water and the bio-solids produced in the reactor. Total suspended solids removal in the reactor varied from 20% to 78% (average 45%) during post-DN testing period and 9% to 70% (average 29%) for pre-DN. The results showed that the forward flow washing improves both the DN function and filtration ability of the reactor.

You do not currently have access to this content.