Contribution of specific interactions between human enteric viruses and wastewater suspended solids on human enteric virus removal by microfiltration was studied. A cross-flow microfiltration system was used with rotavirus HAL1166 and Enterobacter cloacae SENG-6 as the model virus and wastewater suspended solid. Cleavage of rotavirus HAL1166 protein VP4 by trypsin produces the VP8* subunit, which specifically interacts with histo-blood group antigen (HBGA). In the presence of Enterobacter cloacae SENG-6, the trypsin-treated rotavirus concentration reduced with time (R2 > 0.6) compared to the reduction of non-trypsin treated rotavirus. Calculation of the gel/cake layer deposited on the membrane, consisting of Enterobacter cloacae SENG-6 and either trypsin-treated or non-trypsin treated rotavirus HAL1166, revealed that the microflocs consisting of trypsin-treated rotavirus and Enterobacter cloacae SENG-6 have lower porosity and permeability, displaying higher resistance to virus passage through the membrane. The results provide evidence that specific wastewater suspended solids–human enteric virus interaction can contribute to increasing the removal of human enteric viruses by microfiltration.

You do not currently have access to this content.