Abstract

Coconut shell biochar (CSB) was selected as raw material to obtain two kinds of modified biochars by pickling and iron modification. The pickling coconut shell biochar (PCSB) and pickling-iron modified coconut shell biochar (PICSB) were used as adsorbents to remove NO3-N in alkaline rare earth industry effluent. The results showed that pickling smoothed the surface of CSB, and α-FeOOH was formed on the surface of PCSB because of FeCl3 solution modification. Suitable adsorbent dosages of PCSB and PICSB were both 2.0 g/L. The NO3-N adsorption process by PCSB and PICSB both reached equilibrium at 30 min. The quasi-first-order kinetic model shows good fit to the NO3-N adsorption by PCSB. Whereas, the quasi-second-order kinetic model is more suitable for PICSB adsorbing NO3-N. The adsorption mechanisms of PICSB for NO3-N removal were ligand exchange and electrostatic attraction, and that of PCSB for NO3-N removal was electrostatic attraction. The NO3-N adsorption amounts of PCSB and PICSB decreased with increasing adsorption temperature and pH. The maximum NO3-N adsorption amounts of PCSB and PICSB were 15.14 mg/L and 10.75 mg/L respectively with adsorbent dosage of 2.0 g/L, adsorption time of 30 min, adsorption temperature of 25 ± 1 °C, and initial solution pH of 2.01.

You do not currently have access to this content.