A simple and eco-friendly method for the synthesis of hybrid bead silver nanoparticles (AgNPs) employing the aqueous extract derived from natural and renewable source viz. tropical benthic green seaweed Ulva flexuosa is developed (Figure 1). This route involves the reduction of Ag+ ions anchored onto macro porous methacrylic acid copolymer beads to AgNPs for employing them as antibacterial agents for in vitro water disinfection. The seaweed extract itself acts as a reducing and stabilizing agent and requires no additional surfactant or capping agent for forming the AgNPs. The nanoparticles were analysed using High resolution transmission electron microscopy, UV–visible spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray analysis and inductively coupled plasma optical emission spectroscopy. The study elucidates that such biologically synthesized AgNPs exhibit potential antibacterial activity against two Gram positive (Bacillus subtilis, Staphylococcus aureus) and two Gram negative (Escherichia coli, Pseudomonas aeruginosa) bacterial strains tested. The bacterial count in treated water was reduced to zero for all the strains. The atomic force microscopy was performed to confirm the pre and post state of the bacteria with reference to their treatment with AgNPs. Attributes like facile environment-friendly procedure, stability and high antibacterial potency propel the consideration of these AgNPs as promising antibacterial entities.

You do not currently have access to this content.