The thermal hydrolysis process (THP) is applied to enhance biogas production in anaerobic digestion (AD), reduce viscosity for improved mixing and dewatering and to reduce and sterilize cake solids. Large heat demands for steam production rely on dynamic effects like sludge throughput, gas availability and THP process-parameters. Here, we propose a combined energy- and process model suitable to describe the dynamic behaviour of THP in a full-plant context. The process-model addresses interactions of THP with operational conditions covered by the AD model obeying mass continuity. Energy conservation is considered in balancing and converting various energy species dominated by thermal heat and calorific energy. The combined energy and process model was then applied on the THP at Blue Plains advanced WWTP (DC Water) to analyse the process and assess potential energy optimizations. It was found that dynamic effects like mismatched steam production and consumption, temporary gas shortages and underloaded units are responsible for energy inefficiencies with losses in electricity-production up to 29%.

This content is only available as a PDF.
You do not currently have access to this content.