Abstract

In order to solve the problem of difficult treatment of high concentration chromium-containing wastewater, sulfate-reducing bacteria (SRB) with a high tolerance of hexavalent chromium and a strong ability to reduce the compound were isolated from sludge from a sedimentation tank in a leather industrial park and was identified as Desulfovibrio by morphological observation, routine physiological and biochemical determination, 16S rDNA sequencing and phylogenetic tree construction. After ethanol acclimation, a strain of SRB chromium reducing strain (CR-1) was selected as the research object. The optimum growth conditions for hexavalent chromium removal by the strain were determined by single-factor analysis. The chromium removal mechanism of the strain was analysed, and a kinetic model of the reduction process was established. The chromium-reducing ability of the strain was 500 mg/L, the optimum pH value was 7, the optimum temperature was 35 °C, the optimum cultivation time was 24 h, the optimum ratio of bacteria to waste was 1:5. The mechanism of treatment of Cr(VI) by this strain is mainly based on the reduction of Cr(VI) by H2S accumulated in the cultured bacterial solution and the small amount of H2S generated by bacterial reductase, bacterial growth and SO42− reduction in the waste liquid.

This content is only available as a PDF.
You do not currently have access to this content.