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Implementation of an environmental decision support

system for controlling the pre-oxidation step at a full-scale

drinking water treatment plant

Lluís Godo-Pla , Pere Emiliano, Santiago González, Manel Poch,

Fernando Valero and Hèctor Monclús
ABSTRACT
Drinking water treatment plants (DWTPs) face changes in raw water quality, and treatment needs to

be adjusted to produce the best water quality at the minimum environmental cost. An environmental

decision support system (EDSS) was developed for aiding DWTP operators in choosing the adequate

permanganate dosing rate in the pre-oxidation step. To this end, multiple linear regression (MLR) and

multi-layer perceptron (MLP) models are compared for choosing the best predictive model. Besides,

a case-based reasoning (CBR) model was approached to provide the user with a distribution of

solutions given similar operating conditions in the past. The predictive model consisted of an MLP

and has been validated against historical data with sufficient good accuracy for the utility needs

(R2¼ 0.76 and RSE¼ 0.13 mg·L�1). The integration of the predictive and the CBR models in an EDSS

gives the user an augmented decision-making capacity of the process and has great potential for

both assisting experienced users and for training new personnel in deciding the operational set-point

of the process.
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INTRODUCTION
Drinking water treatment plants (DWTPs) consist of a series
of operation units that provide physical and chemical bar-

riers against chemicals and pathogens that occur in raw
water in order to supply potable water to citizens. The cor-
rect management of these facilities becomes challenging

when the source water presents high variability in terms of
quantity and quality.

Pre-oxidation with potassium permanganate is the first

chemical barrier at many utilities. This chemical is dosed
at the beginning of the treatment to oxidise a wide range
of compounds for their subsequent removal by treatment
processes. It has also some advantages in comparison with

other alternatives like chlorine, because it does not generate
trihalomethanes (THM), a hazardous disinfection by-
product (DBP) of chlorination. This fact becomes very

important in utilities that present high THM formation
potential since it has allowed the chlorine dosing to be
moved to the end of the treatment process, where THM
formation is highly reduced. Permanganate is applied for
oxidising a wide range of compounds, including: iron and

manganese, algal-derived compounds, taste and odour com-
pounds, DBP precursors and for control of microorganisms
in the intake structures or treatment basins (World Health

Organization ; Hu et al. ).
DWTP treatment managers adjust the permanganate

dosing rate according to a multi-parametric evaluation that

includes kinetic and inlet quality parameters. At this point,
an optimal dosage is the one that maximises the oxidation
of a wide group of compounds in raw water (and therefore
improving the subsequent treatment unit operations) but

does not surpass a certain manganese residual concen-
tration in water. An overdose of permanganate is easily
detectable through visual inspection, since it gives water a

pink colour. The development of an advanced control tool
can help treatment plant managers and operators to deal
with this multi-parametric challenge, especially in
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Mediterranean-like areas where surface water can have

strong variations in quantity and quality through the year.
Environmental decision support systems (EDSSs) were

designed to cope with this kind of challenge because of

their ability to integrate different kinds of mathematical
models and expert knowledge (Poch et al. ). EDSSs
are generally structured by a data acquisition level, where
all data is gathered and processed (e.g. from a DWTP data-

base); a control level, where mathematical models are fed
with data and provide an output for the response variable;
and supervisor level, which contains expert rules or math-

ematical models that evaluate the answer given by the
control level. In a previous study, Godo-Pla et al. ()
developed a multi-layer perceptron (MLP), a simple type

of artificial neural network (ANN) to predict the permanga-
nate demand at the inlet of DWTP using raw water
characteristics and operational parameters as input data.

Even sensitivity analysis and structural validation can

contribute in understanding the inner mechanics of ANNs,
one limitation of data-driven models is their lack of transpar-
ency (Olden & Jackson ; Humphrey et al. ). An
EDSS should provide users with a justification for the pro-
posed actions in order to build confidence among users
and be a real aid for decision-making (Poch et al. ;
Worm et al. ). It is also important the development of
user-friendly and web-based systems for improving EDSS
usability (Mannina et al. ).

The incorporation of artificial intelligence (AI) tech-
niques into an EDSS has led to more accurate and reliable
systems (Núñez et al. ). The present study investigates
whether the lack of transparency of data-driven models

can be overcome by reporting the propagation of model
uncertainty, and also by comparing these uncertainties
with a preliminary approach to a case-based reasoning

(CBR) model. CBR has been used for modelling the exper-
imental knowledge of wastewater treatment plants
operation for more than two decades (Sànchez-Marrè

et al. ), allowing the use of past experiences to solve
new cases in a certain process. In the present study, a
CBR model is approached for backing up the predictive

model outputs with a distribution of solutions in the past
given similar operating conditions. This way, the precision
of the predictive model can be compared with the precision
in past decisions for similar input conditions and, thus, the

confidence in the use of the EDSS for operating a certain
process can be strengthened.

The objective of this study was to 1) confirm the appro-

priateness of the predictive model by a systematic feature
and model selection procedures and uncertainty analysis,
://iwaponline.com/wst/article-pdf/doi/10.2166/wst.2020.142/710519/wst2020142.pdf
and 2) integrate the predictive model with a CBR engine

in an EDSS to strengthen confidence in the use of the tool
for the daily operation of the process at the DWTP.

This paper is structured as follows. In the second

section, a brief description of the case-study DWTP and
the need for an advanced control system is presented.
Then, the methodology for feature selection and model
development for multiple-linear regression (MLR), MLP

and an approach to a CBR model is described. In the first
part of the third section, the input selection and the accu-
racy of the models is validated with an historical dataset.

Then, in the second part, the integration of the different
models in an EDSS and its potential is discussed. Finally,
in the last section, the conclusions from this work are

presented.
MATERIAL AND METHODS

Case study

Llobregat DWTP is located in Abrera (NE Spain) and pro-
vides water to the metropolitan area of Barcelona. It takes
surface water from Llobregat river and has a maximum

treatment capacity of 3.2 m3·s�1. The treatment train has
several processes (pre-oxidation with permanganate,
enhanced coagulation, oxidation with chlorine dioxide,

sand and carbon filters, electrodialysis reversal and disinfec-
tion with sodium hypochlorite) in order to remove THM
precursors and comply with Spanish regulation for drinking
water (Valero & Arbós ). Llobregat river is a Mediterra-

nean catchment that presents high variability in terms of
quantity and quality throughout the year, which poses a
challenge for treatment plant managers to produce constant

effluent water quality. To help with that, Llobregat DWTP
has an extensive analytical and on-line monitoring of the
treatment process but no predictive tools are available.

This fact motivated the development of data-driven models
to predict the main operational set-points of the plant, like
in potassium permanganate dosing (DKMnO4) at the pre-oxi-

dation step (Godo-Pla et al. ). This way, the utility’s
digital infrastructure is used to provide users with augmen-
ted decision-making capabilities on the operation of
DWTPs.

Llobregat river flows from the Pyrenees to the Mediter-
ranean Sea, with the presence of a system of reservoirs in
the upper part of the basin that manage the environmental,

domestic and industrial uses of water in the lower part of the
basin. Changes in the river management have great effect on
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the quality of Llobregat DWTP raw water. Therefore, a five-

year period was suitably chosen as a time-space for repre-
senting the variations that Llobregat DWTP catchment
may suffer due to the management plans of the upper part

of the basin. A dataset with analytical values and oper-
ational data from daily samples collected at 7 a.m. was
built for the period January 2013–December 2018.

The first step for developing a model is the selection of

inputs and outputs. The selected output in this study was
the potassium permanganate dose (DKMnO4). For selecting
the inputs, a pool of input candidates was considered

based on the data availability (from commercially available
sensors and probes) and on the existence of a known or sus-
pected relationship with the output variable (Baxter et al.
). The pool of candidates includes all applicable vari-
ables for developing the data-driven model: Raw water
temperature (TRW), pH (pHRW), total organic carbon
(TOCRW), Turbidity (TurbRW), electrical conductivity

(ECRW), UV absorbance at 254 nm (UV254RW), Color
(ColorRW) and Inflow rate (QRW). Main characteristics of
these parameters are summarised in Table 1.

Features selection

Among all the possible input subsets, a procedure has to be

followed to systematically choose the one that provides suf-
ficient prediction accuracy for subsequent model
development. The best subset selection method was applied

to a pool of predictors candidates (p¼ 8), including all the
quality parameters listed in Table 1. This method consists
of fitting models that consider every possible combination

of input subsets, using p predictors, for p¼ 1,…,8 (James
et al. ), being 2p the total number of possible
Table 1 | Raw water characteristics of Llobregat DWTP

Parameter Unit Mean St. dev
10th
percentile

90th
percentile

TRW
�C 16.8 6 8.5 24.9

pHRW – 8.11 0.2 7.85 8.37

TOCRW mg·L�1 3.31 0.8 2.51 4.21

TurbRW NTU 39 35 5 76

ECRW μS·cm�1 1,347 262 1,033 1,659

UV254RW m�1 6.94 1.9 5.30 9.10

ColorRW mg Pt-Co · L�1 11.00 5.0 7.50 16.90

QRW m3 · s�1 1.85 0.7 0.90 2.80

DKMnO4 mg · L�1 0.82 0.3 0.42 1.23

N¼ 2,040 samples from January 2013 to December 2018.
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combinations. By doing this, a single best model can be

chosen that minimises the cross-validation prediction error
or maximises the adjusted R-squared. Adjusted R-squared
was used because it adjusts the coefficient of regression to

the number of terms in a model. This method is adequate
when p is not large, since it is not computationally efficient.
The software used in this study was MATLAB R2015b
(MathWorks®).
Predictive model selection

For modelling purposes, historical data was allocated into a
calibration and test dataset (70 and 30%, respectively) to
assess the model’s ability to perform well on data that was

not used to calibrate it (generalisation property). To ensure
that data contained in these subsets contain similar statisti-
cal properties, allocation of the data was done using a self-

organised map algorithm (May et al. ) with the selforg()
function. Therefore, the calibration dataset was used for
model fitting purposes and for assessing the replicative vali-

dation of the models whereas the test dataset (unseen during
model calibration) was used for predictive validation. Two
kinds of modelling techniques were compared: multiple
linear regression (MLR) and multi-layer perceptron (MLP).

A MLR model can be represented in the form of
Equation (1):

Y ¼ β0 þ β1�X1 þ β2�X2 þ . . .þ βn�Xn (1)

where Y is the response variable, β0 is the intercept coeffi-

cient, X1,…, Xn are input variables and β1,…, βn are
coefficients estimated by a least squares technique. Input
data was log-scaled before fitting the multiple linear

regression model using the fitlm() function. Data points
below 5% and above 95% of the empirical distribution
cumulative function ecdf() were marked as outliers and

removed from the original dataset after applying a robust
regression method.

MLP are simple forms of artificial neural networks and

consist of a minimum of three layers: the input layer, where
each node corresponds to an input variable; hidden layers,
where nonlinear activation functions connect input nodes
with the following layer, and the output layer, where the

final output is a linear combination of the hidden layer out-
puts. Regarding MLP model development, different number
of nodes (K) ranging from 1 to 9 in the hidden layer were

tested to find the model that best captures the underlying
relationships in the experimental data. More details on
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methodology used for MLP model development can be

found in Godo-Pla et al. ().
Uncertainty analysis

A Monte Carlo scheme was used for quantifying the uncer-
tainty of the models resulting from uncertainties in the

parameter estimation step. This quantification in full-scale
plants is important to increase the awareness of modelling
robustness and to avoid bad modelling practices (Borzooei
et al. ). To these means, 100 parameter sets were sampled

from the joint distribution of parameter estimators (θ̂) using
multivariate random sampling with mvnrnd() function. The
probability density of Monte Carlo outputs for each obser-

vation can be computed using ksdensity() function.
Case-based reasoning model

CBR is an AI modelling technique that aims to provide sol-
utions to new cases by looking at solutions of previous

similar cases. In the present application, a CBR model was
approached to provide the user with information about
which permanganate doses were used in the past, given simi-
lar raw water and operational characteristics. A general CBR

model is described by four processes: Retrieve, Reuse, Revise
and Retain (Aamodt & Plaza ). In the present study, the
preliminary approach to a CBR model only comprises the

first two processes, which consist of (1) retrieving the most
similar cases and (2) reusing the solutions (permanganate
dosing rate) in these cases to support the predictive model

outputs. Local and global similarity indices were used to
find the most similar cases to the current one. Local similarity
was assessed using domain expert knowledge in a binary
Figure 1 | Flow diagram of predictive and case-based reasoning model integration.

://iwaponline.com/wst/article-pdf/doi/10.2166/wst.2020.142/710519/wst2020142.pdf
basis, as expressed in Equation (2):

SIMlocal(Ci,k, Cj,k) ¼ 1 if C j,k ∈ [Ci,k � atrk, Ci,k þ atrk]
0 otherwise

�

(2)

where SIMlocal is the local similarity measure of attribute k
between cases Ci and Cj, Ci,k is the value of attribute k in
case Ci and atrk is the local similarity for attribute k.
Domain knowledge was used to assign atrk values. For k¼
TRW, TurbRW, UV254RW and QRW, atrk was set to 2.5 �C, 20
NTU, 1.5 m�1 and 0.5 m3 · s�1, respectively.

Global similarity (SIMglobal) between two cases (Ci, Cj)

was also assigned on a true/false basis, being true only if
all local similarities were true.

SIMglobal (Ci, Cj) ¼ 1 if ∀ k, SIMlocal(Ci,k, Cj,k) ¼ 1
0 otherwise

�

(3)

Given a case C0, the probability density of solutions for
all cases C1…CN from the historical database where
SIMglobal¼ 1 can be computed as a means to illustrate oper-
ator’s behaviour uncertainties in similar past situations.

Note that in the present study it is not intended to find the
most similar case and provide a unique solution rather
than providing the user with a distribution of similar actions

done in the past. Therefore, this preliminary approach to the
CBR model gives a probability distribution of past actions
that is comparable to the uncertainty analysis made for the

predictive model.
A schematic of how the predictive and the CBR model

outputs are integrated is shown in Figure 1.
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RESULTS AND DISCUSSION

Features selection

Best subset selection method was applied for feature
selection of the data-driven models. Results after fitting
MLR models with all possible input subsets containing

from p¼ 1… 8 predictors are shown in Figure 2.
It can be seen that as the number of predictors increase,

the model accuracy in terms of adjusted R-squared increases

but at p¼ 4, the inclusion of an additional predictor in the
MLR model does not correspond to a significant increase
in the adjusted-R2. Within all possible combinations includ-

ing four variables, the subset that maximises model accuracy
included the following state variables: TRW, TurbRW,
UV254RW and QRW, with an adjusted R-squared of 0.54.

The selected subset was considered to have physical
meaning in the pre-oxidation process. TRW strongly affects
the kinetics and solubility of permanganate in water, and
seasonal variability is strongly related to this. Turbidity

and UV254 are surrogate measures for suspended solids,
organic matter and sediments, among others. These par-
ameters are usually associated with organic loads resulting

from river’s runoff, being positively correlated with the per-
manganate dose. The inflow rate is inversely proportional to
the contact time that water is in contact with permanganate

in the pre-oxidation chamber and also in the clarifiers, thus
affecting the oxidation process. Other parameters like pHRW

did not result in the best input subset. This might be because
pH is adjusted at the inlet of the DWTP with a target range
Figure 2 | Adjusted R-squared for all possible combinations of subsets containing from

1 to 8 predictors as input variables in an MLR model for predicting the

permanganate dose.
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of 7.4-7.7 by a carbon dioxide dosing. Therefore, pHRW does

not play a key role, as expected.
Predictive model validation

The performance statistics of MLR and MLP models using

the selected features were compared using both calibration
(replicative validation) and test dataset (predictive vali-
dation). The results are shown in Figure 3.

MLR showed similar performance compared to MLP
models. In terms of model predictive accuracy, it can be
seen that MLP-1, MLP-4 and MLP-7 gave similar results

with RSE of 0.132, 0.134 and 0.133 mg · L�1 respectively,
while MLR had an RSE of 0.139 mg · L�1. Balancing the
number of parameters involved (greater model parsimony)

and performance, the MLP-1 model was selected for further
analysis and integration into the EDSS. The selected model
showed R2 values of 0.76 and 0.74 for calibration and test
dataset, respectively. Monte Carlo outputs of this model

were computed for the test dataset (data unseen during
model calibration), and it is shown in Figure 4.

It can be observed that Monte Carlo simulations

resulted in narrow uncertainty bands on each sample.
The developed model adjusted correctly the seasonal as
well as smaller day-to-day variations on the permanganate

demand. Seasonal variations were associated with changes
in raw water temperature. Llobregat DWTP takes water
from a river and the temperature has strong differences
between the summer and winter period, ranging from 4 to

25 �C, leading to changes in the permanganate demand
from 0.4 to 1.2 mg · L�1. Also, smaller fluctuations on the
permanganate demand in the ±0.2 mg · L�1 range were

found because of day-to-day fluctuations of the natural
organic matter or other components that modify the per-
manganate demand.
Figure 3 | Root squared error of model predictions for the MLR and the different MLP-K

models, being K¼ 1… 9 nodes in the hidden layer.



Figure 4 | Representation of uncertainty in MLP-1 predictions for KMnO4 demand time-

series, showing the experimental values vs the model output on the test

dataset for the period May 2018 to December 2018.
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Model integration in an EDSS

For implementation of the model in the real process and to
allow the communication of the model outputs to the
DWTP operators, models were integrated into an EDSS

framework and a graphical user interface (GUI) was built.
A screenshot of the developed GUI can be seen at Figure 5.
The presented system is connected to the DWTP online data

acquisition system and gathers real-time input data. The
output of MLP-1 model and the probability distribution of
Figure 5 | Graphical user interface for the EDSS.

://iwaponline.com/wst/article-pdf/doi/10.2166/wst.2020.142/710519/wst2020142.pdf
Monte Carlo outputs and response of the CBR model are

displayed.
Before running the control system in a closed loop and

having the results of the real impact and limitations of this

tool, building confidence among the users is needed. There-
fore, as an initial step, the EDSS is running in parallel with
the Supervisory Control and Data Acquisition (SCADA)
system and is working as open-loop control system by

recommending the operational set-points. The purposed per-
manganate dosing rate of the predictive model is backed up
by the reporting of the uncertainty analysis and CBR model

outputs. This way, the extent of uncertainty/precision of the
predictive model but also of the historical behaviour of the
operators in similar cases are shown. Generally, uncertain-

ties regarding the predictive model output were in a lesser
extent than variations of the permanganate dosing
according to previous similar conditions given by the
CBR model. The daily decision-making can be speeded-up

and improved by offering consistent and robust results to
the users, who can consult the model outputs at any time
and according to real-time raw water characteristics and

operation conditions of the plant.
Moreover, the EDSS architecture allows the addition of

expert rules,which act as supervisory rules at the topof the con-

trol algorithm. It was considered necessary to add a rule for
lowering the permanganate dose to 0.2 mg · L�1 in case of
achieving manganese concentrations greater than 10 μg · L-1
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at the sand filters, to prevent potential overdosing of the

chemical. The EDSS was implemented at Llobregat DWTP
and was tested in the January-September 2019 period.
Figure 6 shows the time-series of the daily average of per-

manganate dosing rate proposed by the predictive model
versus the one applied at full scale.

During the studied period, it was up to DWTP users to
apply the predicted dose or adjust it according to the

actual concentration of residual manganese in water and
previous experience. As a first approximation, the combi-
nation of the predictive model with the expert rule for

lowering the dosing rate at high residual manganese levels
was considered to be sufficiently good. It was shown that
the purposed system did not lead to any overdosing of the

system, especially in the March-April 2019 period, in
which high concentrations of residual manganese (between
10 and 20 μg · L�1) led to a proposal for lower dosing rates.
The laboratory measurements in these cases were all within

quality specifications. Excess permanganate passing through
the filters has to be avoided, since it may enter the distri-
bution system and lead to an undesirable taste in water

(Crittenden et al. ).
After the implementation phase, it was considered that

benefits from EDSS include providing baseline operational

set-points while maintaining the operator’s added-value
expertise in the process. Modifications on the baseline
set-points made by the users were recorded for the

follow-up of the implementation phase. It is also expected
that DWTP users will gradually build confidence in predic-
tive model outputs and implement them more consistently.
It was noted that systems like the developed EDSS may

contribute to train and support those technical personnel
that have not accumulated sufficient experience to run
Figure 6 | Results of the implementation phase of the EDSS.
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the process, while it serves as a supporting tool for experi-

enced users.
CONCLUSIONS

An environmental decision support system to help with the
multi-parametric challenge of controlling the pre-oxidation

step at a full-scale DWTP was implemented. To do this,
first a systematic procedure for feature selection was
done, showing that potassium permanganate dose can be

best predicted using temperature, turbidity, absorbance at
254 nm and inflow rate as input variables. For model devel-
opment purposes, multiple linear regression and multi-layer

perceptron models were compared, and the best data-
driven approach was shown to be a multi-layer perceptron
with one node in the hidden layer, as shown in previous

studies.
Uncertainties in the model output resulting from

model development were quantified using a Monte Carlo
scheme and validated against historical data. The root

squared error and R2 of the predictive model was
0.13 mg · L�1 and 0.76 respectively, which was considered
sufficiently accurate for the utility needs. In lights of inte-

grating the predictive model in an EDSS for aiding in day-
by-day operation of a full-scale DWTP, a case-based
reasoning model was developed in order to support

model outputs and overcome the black-box nature of the
predictive model.

The MLP and CBR models were integrated in an EDSS
that gathers data from online sensors and analysers and

provide real-time support for daily operation. By integrat-
ing these two kinds of model, the user is informed about
uncertainty in model predictions, as well as uncertainties

related to previous actions with similar operating con-
ditions recorded in the historical database. We believe
that this system can increase the robustness of model pre-

dictions and allows the user to become more confident in
using the EDSS for aiding in decision-making rather than
being guided only by previous experience. Also, the

EDSS architecture demonstrates being adaptable to
specific cases and situations out of the scope of the predic-
tive model by the inclusion of expert rules at the supervisor
level. The EDSS is currently implemented at Llobregat

DWTP and has been operated as an open-loop control
system for 9 months, providing the base-line permanganate
dosing rate from which operators decided whether to apply

it or adjust it according to their experience to fit more
specific cases.
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