Full-scale and laboratory-scale artificially constructed reed beds utilising the root zone method (RZM) of wastewater treatment were investigated for their removal efficiencies of a range of pathogenic microorganisms. Performances were compared for RZMs employing different hydrophytes, planting substrates and climatic conditions. All pathogens were removed by the RZM to some extent. Planted beds generally performed better than unplanted beds although the type of hydrophyte used was not significant. Gravel beds were more efficient than soil beds in the removal of protozoan pathogens and of helminth eggs; numbers of these pathogens were below levels of detection in gravel bed effluents. For faecal coliforms the type of planting substrate was not significant, providing hydrophytes were present. Climatic conditions made little difference to treatment efficiency although seasonal variation was observed in temperature climates, where the removal of faecal coliforms declined in the winter months, and in subtropical climates where higher numbers of free-living amoebae were recorded during the summer. It was concluded that the RZM is a suitable method for the treatment of domestic wastewaters in tropical and subtropical regions of Mexico.