The accumulation of deposits in sewers causes widespread concerns of either operational or environmental nature. It is believed that a number of sediment-related nuisances can substantially be controlled in adapting the characteristics of sewer pipes as a function of local constraints and circumstances. In particular, key design parameters such as cross-section shape or hydraulic roughness of inner walls are currently selected basing more on empiricism and intuition than on full knowledge of the sediment transport driving processes. A valid track for optimization of these parameters is to run mathematical simulations of the sediment transport behaviour under varying design scenarios. This option, however, supposes that a robust mathematical procedure to compute sediment transport capacity in sewers is available, embracing all primary physical factors of influence. Starting from a theoretical description of shear turbulence suggested by Bagnold (1966), a suspension formula is developed dedicated to the specific sewer flow properties. Applying this formula to the case of a main sewer presenting a composite cross-section allows to illustrate how geometrical discontinuities influence sediment transport characteristics in real conduits.

This content is only available as a PDF.