Excessive phosphorus (P as orthophosphate) is one of the major pollutants in natural water that are responsible for algal blooms and eutrophication. P removal by slag is an attractive solution if the P sorption capacity of slag is significant. To design an efficient land treatment facility, basic information on the behaviour of P in the media-water environment is required. In this study, detailed column experiments were conducted to study the P transport under dynamic condition, and mathematical models were developed to describe this process. The column experiments conducted with dust and cake waste products (slag) from a steel industry as adsorbing indicated that they had higher sorption capacity of P than that of a sandy loam soil from North Sydney, Australia. P transport in the dust and cake columns exhibited characteristic S-shaped or curvilinear breakthrough curves. The simulated results from a dynamic physical nonequilibrium sorption model (DPNSM) and Freundlich isotherm constants satisfactorily matched the corresponding experimental breakthrough data. The mobility of P is restricted by the adsorbents and it is proportional to the sorption capacity of them.

This content is only available as a PDF.