This study investigates variations of phosphorus and polyhydroxyalkanoates (PHAs) in a combined activated sludge - biofilm process, operating under various sludge retention times (5, 10 and 15 days) and different dissolved oxygen conditions (0.1, 0.5, 1.0 and 2.0 mg/l in aerobic stage). Experimental results indicate that phosphorus uptake closely corresponds to utilization of PHAs during anoxic and aerobic stages. Moreover, the sludge in the anoxic stage exhibits a higher PHAs utilization efficiency with respect to phosphorus uptake than sludge in the aerobic stage, when it is under low COD-SS loading conditions. The values of rP/PHAs, representing sludge capacity on phosphorus uptake, range from 0.1-1.0 mg P/mg PHAs. In addition, analyzing the distribution of 3-hydroxybutyrate (3HB), 3-hydroxy-2-methylbutyrate (3H2MB), 3-hydroxyvalerate (3HV) and 3-hydroxy-2-methylvalerate (3H2MV) reveals that 3HB and 3HV are the major components of PHAs. The values of 3HB/PHAs and 3HV/PHAs vary with COD-SS loading of the process. When F/M ratio increases, 3HV/PHAs value increases and 3HB/PHAs value decreases simultaneously. This phenomenon implies that more bacteria accumulated 3HV as storage matter under high COD-SS loading conditions. The kind of bacteria population shift would intensify the competition of “G bacteria” with polyphosphate accumulating organisms, possibly causing process deterioration during phosphorus removal.

This content is only available as a PDF.