Experiments were conducted in two 2.8 liter UASB (upflow anaerobic sludge blanket) reactors treating proteinaceous wastewaters at 37° and 55°C with 9 hours of hydraulic retention. Results showed that the mesophilic reactor consistently removed 83.5-85.1% of COD (chemical oxygen demand) at loading rates ranging 8-22 g COD l−1 d−1 (corresponding to 3000-8250 mg l−1 of proteinaceous COD in wastewater), whereas the thermophilic reactor removed only 68.5-82.7%. At 32 g COD l−1 d−1 (i.e. 12000 mg COD l−1), the removal efficiencies were lowered to 75.7% in the mesophilic reactor and 65.1% in the thermophilic reactor. At 42 g COD l−1 d−1, severe sludge washout occurred in the mesophilic reactor; at the same loading rate, the thermophilic reactor removed only 53.8% of COD even though sludge washout was under control. The degradation rate in the both reactors was limited by the initial hydrolysis of proteins. However, batch tests showed that thermophilic sludge had slightly higher methanogenic activities than mesophilic sludge in treating proteins and intermediate acids, except propionate. The sludge yields in mesophilic and thermophilic reactors were 0.066 and 0.099 g VSS g COD−1, respectively. Observations by scanning electron microscopy indicated that both types of sludge granules were of irregular shape. There was little noticeable difference between the two granules; both had neither a layered microstructure nor a predominant bacterial species.

This content is only available as a PDF.