Intrinsic biodegradation of trichloroethene and 1,1,1-trichloroethane in groundwater at a Superfund site in California has been observed. An anaerobic zone exists in the area closest to the source location, yielding the expected complement of reductive dechlorination daughter products, including cis-1,2-dichloroethene (cis-DCE) and vinyl chloride (VC). Significant levels of methane and ethene were also generated in the anaerobic zone. The groundwater returns to aerobic conditions downgradient of the source, with methane, ethene, VC, and several other compounds still present. Attenuation of VC in the aerobic zone suggests that it is being biodegraded. In this study microcosms were used to evaluate the role of methane and ethene as primary substrates for aerobic biodegradation of VC. Biodegradation of VC was fastest in the bottles containing ethene, with 40 μmol of VC consumed over a 150 day period, compared to approximately 15–20 μmol with methane or a mixture of methane and ethene. VC did not noticeably inhibit ethene biodegradation but did slow the rate of methane use. Methane inhibited ethene metabolism, which apparently caused a reduction in VC biodegradation when methane was present with ethene. These results suggest that ethene plays an important role during in situ natural attenuation of VC under aerobic conditions. Microcosms were also set up with VC alone. Following a 75 day lag period, VC consumption began and subsequent additions were consumed without a lag, suggesting the presence of organisms capable of using VC as a growth substrate. After providing VC alone for nearly 400 days, aliquots of the enrichment culture were used to evaluate its ability to biodegrade cis- and trans-DCE. Both compounds were readily consumed, although addition of VC as the primary substrate was needed to sustain biodegradation of repeated additions. This result suggests that organisms capable of using VC as a sole substrate may play an active role in aerobic natural attenuation of DCEs.

This content is only available as a PDF.