A hybrid two-phase system, consisting of a solid waste reactor as the acidification reactor and a wastewater reactor, i.e. an upflow anaerobic sludge blanket (UASB) reactor, as the methanogenic reactor, for anaerobic digestion of food waste was investigated. After the pre-acidification stage, COD and total VFA removals in the methanogenic phase were in the ranges of 74-93% and 77-100%, respectively, while leachate COD and total VFA concentrations in the acidification phase decreased by 95% and 97-99%, respectively. Some 99% of the total CH4 generated was from the methanogenic phase with the CH4 content of 68-70%. About 77-79% of TOC, 57-60% of volatile solids and 79-80% of total COD were removed. The results of this laboratory-scale study show that the hybrid two-phase anaerobic batch reactor system is suitable for effective conversion of food waste into CH4 and CO2. The hybrid two-phase system can be further developed into an effective and efficient way to enhance waste stabilization in operating bioreactor landfills.

This content is only available as a PDF.