A reliable wastewater characterization is an integral part of treatment and management strategies for industrial effluents. This is especially true for the pharmaceutical industry, which exhibits significant differences in its line of activity, generating effluents of very specific and complex natures. Any hazard or risk assessment of wastewater and/or determination of its treatability must include an evaluation of its degradability. Usually various non-standardized laboratory or pilot-scale long-term tests are run by measuring summary parameters for several days to determine the biodegradation potential of the effluent. A complex approach, based on stabilization studies, was proposed to determine the hazardous impact of wastewaters in terms of biodegradable and persistent toxicity.

The objective of our work was to carry out complex hazard evaluation of pharmaceutical wastewaters. Whole effluent toxicity was determined using two different toxicity tests. First, we measured the inhibition of oxygen consumption by activated sludge. The test indicated toxicity of the wastewater and thus we performed an additional acute toxicity test with luminescent bacteria Vibrio fisheri. The next step was the determination of whole effluent ready biodegradability. It was determined with simultaneous measurement of oxygen consumption (ISO 9804) and carbon dioxide production (ISO 9439) in a closed respirometer, accompanied by DOC/IC measurements. The pharmaceutical wastewater degraded readily (83%, lag phase was 2 days, biodegradation rate was 0.339 day−1) on the basis of O2 measurements. The biodegradation, calculated from the CO2 measurements, was comparable. We also applied mass balances of DOC/IC at the beginning and at the end of biodegradation experiments to confirm the extent and rate of biodegradation. The determination of hazardous impact and treatability of the effluent was concluded with aerobic stabilization studies. Biodegradation of the wastewater during the study was followed by relevant biochemical analysis and DOC/IC mass balance.

This content is only available as a PDF.