A distributed model of anaerobic digestion of solid waste was developed to describe the balance between the rates of polymer hydrolysis and methanogenesis during the anaerobic conversion of rich and lean wastes in batch and continuous-flow reactors. Waste, volatile fatty acids (VFAs), methanogenic biomass and sodium concentrations are the model variables. Diffusion and advection of VFAs inhibiting both polymer hydrolysis and methanogenesis were considered. A sensitivity analysis by changing the key model parameter values was carried out. The model simulations showed that the effective distance between the areas of hydrolysis/acidogenesis and methanogenesis is very important. An initial spatial separation of rich waste and inoculum enhances the methane production and waste degradation at high waste loading if relatively low VFA diffusion into the methanogenic area is taking place. When both hydrolysis and methanogenesis are strongly inhibited by high levels of VFA, fluctuations in biomass concentration are thought to be responsible for initiating the expansion of methanogenic area over the reactor space.
Skip Nav Destination
Close
Close
Article navigation
Research Article|
August 01 2003
A distributed model of solid waste anaerobic digestion: sensitivity analysis
V.A. Vavilin;
*Water Problems Institute, Russian Academy of Sciences, Gubkina str.3, 119991, Moscow, Russia
E-mail: vavilin@hotmail.com
Search for other works by this author on:
S.V. Rytov;
S.V. Rytov
*Water Problems Institute, Russian Academy of Sciences, Gubkina str.3, 119991, Moscow, Russia
Search for other works by this author on:
S.G. Pavlostathis;
S.G. Pavlostathis
**Georgia Institute of Technology, Atlanta, GA, 30332-0512, USA
Search for other works by this author on:
J. Jokela;
J. Jokela
***Jyavaskyla University, Dept. of Biological and Environmental Science, P.O. Box 35, FIN-40351 Jyavaskyla, Finland
Search for other works by this author on:
J. Rintala
J. Rintala
***Jyavaskyla University, Dept. of Biological and Environmental Science, P.O. Box 35, FIN-40351 Jyavaskyla, Finland
Search for other works by this author on:
Water Sci Technol (2003) 48 (4): 147–154.
Citation
V.A. Vavilin, S.V. Rytov, S.G. Pavlostathis, J. Jokela, J. Rintala; A distributed model of solid waste anaerobic digestion: sensitivity analysis. Water Sci Technol 1 August 2003; 48 (4): 147–154. doi: https://doi.org/10.2166/wst.2003.0241
Download citation file:
Close
Citation
V.A. Vavilin, S.V. Rytov, S.G. Pavlostathis, J. Jokela, J. Rintala; A distributed model of solid waste anaerobic digestion: sensitivity analysis. Water Sci Technol 1 August 2003; 48 (4): 147–154. doi: https://doi.org/10.2166/wst.2003.0241
Download citation file:
Close
Impact Factor 1.638
CiteScore 2.9 • Q2
40
Views
0
Citations