This paper deals with catalytic and photocatalytic oxidation of organic substances using H2O2 over heterogeneous Fenton-type catalysts. In the study a series of Fe-containing catalysts was experienced. A zeolite named as FeZSM-5 was selected as the most active heterogeneous Fenton-type catalyst. The FeZSM-5 reported was prepared by hydrothermal crystallization in the presence of iron salt. In contrast to the homogeneous Fenton system the catalyst prepared had minimal, if any, leaching of iron ions, was stable during 30 catalytic runs and didnÕt lose its activity in the presence of complexing agents, e.g. P2O74-. The catalyst was active in oxidation of organic substances at pH from 1.5 to 8, maximum activity was observed at pH = 3. The FeZSM-5 effectively oxidized a simulant of the warfare agent, diethylnitrophenil phosphate, which is hardly detoxified by other methods. It appeared that the rate of oxidation of formic acid, ethanol and benzene over FeZSM-5 increased under the action of visible light (λ>436 nm), quantum efficiency being 0.06-0.14.

This content is only available as a PDF.