The sequentially combined carbon (SCC) of methanol and acetic acid was used for the biological nutrient removal (BNR). Its BNR performance was compared with methanol or acetic acid as a sole carbon substrate. Compared to the sole carbon substrate, the use of SCC demonstrated the highest overall TIN removal of 98.3% at a COD ratio of 30 mg COD/l of methanol/50 mg CDO/l of acetic acid. Furthermore, denitrification was more enhanced when methanol was used as one of the SCC, rather than as a sole carbon source. Complete phosphorus removal was accomplished with a non-detectable o-P concentration when SCC was added. This research also showed that aerobic denitrifiers appear to prefer acetic acid to methanol, and the amount of poly-§-hydroxybutyrate (PHB) stored by P accumulating organisms (PAOs) using acetic acid in the anoxic zone could be another important factor in improving the aerobic denitrification. The SCC was a very favorable carbon source for the aerobic denitrification since acetic acid was utilized more efficiently for P-release in accordance with increase of PHB stored in the cell of PAOs by removing nitrogen first using methanol.

This content is only available as a PDF.