In this study, the effect of three oxidants, sodium hypochlorite, potassium permanganate, and ozone, were tested for the removal of 2-MIB with presence of cyanobacteria. Algae in water samples from the source water of Feng-Shen waterworks (FSW), Taiwan were cultivated at 30¡C with continuous light at an intensity between 2,500 and 3,400 lux. During the cultivating process, water samples were analyzed for nutrients, light absorbance at 665nm (A665), and 2-MIB concentration. The 2-MIB concentrations within the incubated samples increased to as high as 1,000 ng/L to 2,000 ng/L, although no extra nutrients were added to the raw water. After 2 to 3 days incubation, the intracellular 2-MIB concentration was as high as 70% of the total 2-MIB in the samples. The algae that developed were mainly cyanobateria, and more than 90% belonged to the Genus Oscillatorias. An almost 100% removal of both 2-MIB and geosmin in the raw water was observed after ozonation for 10 minutes at a dosing rate of 0.91 mg/l-min. Chlorine and permanganate were much less effective, both removing only about 11% of the 2-MIB within 60 minutes at oxidant concentration of 10 mg/l. Oxidation of the cultivated samples showed that chlorine and permanganate may damage algae cells causing them to release intracellular 2-MIB. During the 60 minutes of reaction time, the total 2-MIB concentrations (intracellular plus dissolved) varied by no more than 10%, however, the ratios between dissolved and total 2-MIB concentrations increased. Two effects of ozonation on the 2-MIB concentration in the cultivated samples were observed when the algae were young, namely 2-MIB release from damaged cells and 2-MIB oxidization. The rates of 2-MIB release and 2-MIB destruction were similar. However, old algae cells were more easily damaged. As a result, intracellular 2-MIB was released faster, and the soluble 2-MIB was destroyed more quickly by ozonation.

This content is only available as a PDF.