Aerobic granular sludge, without the addition of carrier material, has only been reported in one suspended growth system, the Sequencing Batch Reactor (SBR) operated with short fill and settling periods. Recent studies have demonstrated that extracellular polysaccharides increased with the formation of aerobic granules, and that the shear force may stimulate production of these polysaccharides. In the study described herein, two SBRs were operated with the same shear force (air flow rate 275 L h−1) and two different settling times (2 and 10 min). Only the reactor with 2 min settling formed completely granular sludge, although granules were present in both reactors. Community analysis using 16S rRNA PCR products and DGGE showed that the communities diverged quickly after reactor start-up. For samples taken at steady-state, the granular population was more stable and less diverse than the flocculent reactor. EPS extraction of samples using cation exchange resin yielded similar values for aerobic granular sludge and previously reported anaerobic granules. While differences in the protein and TOC content between the flocculent and granular reactors increased appreciably as the sludge became more granular, the protein to polysaccharide ratio was relatively constant. The experiment confirmed previous theories that short settling times in SBRs select for granular sludge. The settling time results in granular sludge having a higher EPS protein content and a less diverse but more stable population.

This content is only available as a PDF.