Micropollutants as pharmaceutical active compounds (PhACs), residuals of personal care products or endocrine disrupting chemicals are of increasing interest in water pollution control. In this context the removal efficiencies of sewage treatment plants (STPs) are of importance, as their effluents are important point sources for the release of those substances into the aquatic environment. Activated sludge based wastewater treatment is the worldwide prevalently used treatment technique. In conventional plants the separation of treated wastewater and sludge occurs via sedimentation. A new development is the application of membrane technology for this separation step. The studies focus on the influence of the solids retention time (SRT) on the removal efficiency, as the SRT is the most important parameter in the design of STPs. A conventional activated sludge plant (CASP) and a membrane bioreactor (MBR) were operated at different SRTs. The substances selected are the antiepileptic carbamazepine, the analgesics diclofenac and ibuprofen, the lipid regulator bezafibrate, the polycyclic musks tonalide and galaxolide and the contraceptive 17α-ethinylestradiole. No significant differences in the removal efficiency were detected. Due to the absence of suspended solids in the MBR effluent, substances with high adsorption potential could be retained to slightly higher amounts.

This content is only available as a PDF.