The molecular details behind hydrogen evolution during fermentation are reviewed. Hydrogen is evolved by hydrogenase, a class of enzymes containing complex metallo-centers. In most cases, sugars are degraded to pyruvate which in turn is converted to a variety of fermentation products. Various pathways leading to fermentative hydrogen generation are outlined and discussed. Thermophilic fermentations have higher yields than mesophilic ones. Yields are thought to be limited to 4H2 per glucose under standard conditions. The highlights of some actual studies of fermentations are presented and ways of potentially increasing hydrogen yields are discussed. It may be possible to achieve higher hydrogen yields by carrying out fermentations under microaerobic conditions where limited respiration could provide additional reducing power to drive the nearly complete conversion of sugar substrates to hydrogen.

This content is only available as a PDF.