In order to compare the performance of biofilms growing on different support media, three reactors were fed with municipal wastewater from the city of Garching, Germany, and operated under the sequencing batch procedure. The support media tested have the commercial names of Kaldnes, polyethylene special support for moving bed reactors with approximate diameter of 12 mm; Liapor, ceramic spheres with diameters between 4 and 6 mm; Linpor, plastic foam cut in cubes of 15 mm. The bench-top reactors were tested for COD, TSS and ammonia nitrogen removal. During 452 days runs with organic loads between 0.5 and 8.0 gCOD/m2·d were tested. Thin biofilms (Kaldnes and Liapor) perform better for COD and ammonia removal under lower organic loading values (<2.5 gCOD/m2·d). For organic loads over 3.0 gCOD/m2·d, the reactor packed with Linpor (thick biofilm) showed a better COD and ammonia nitrogen removal than the other two. Linpor achieved the highest NOx-N production reaching values between 15 and 20 mg/l. For low organic loading rates Linpor and Liapor present similar average NOx-N concentrations. Kaldnes shows the lowest concentrations throughout the whole experimental period. The difference between ammonia nitrogen removal and NOx-N generation is simultaneous denitrification inside the deep biofilms. The average mean cellular retention times were 5.4 days for Liapor, 10.0 days for Kaldnes and 22.9 days for Linpor. This is the reason why Linpor achieved complete nitrification even with higher organic loads.

This content is only available as a PDF.