The purpose of the experiments was to increase the rate of activated sludge denitrification in the combined biological treatment system of the Southpest Wastewater Treatment Plant in order to gain savings in cost and energy and improve process efficiency. Initial profile measurements revealed excess denitrification capacity of the preclarified wastewater. As a consequence, flow of nitrification filter effluent recirculated to the anoxic activated sludge basins was increased from 23,000 m3 d−1 to 42,288 m3 d−1 at an average preclarified influent flow of 64,843 m3 d−1, Both simulation studies and microbiological investigations suggested that activated sludge nitrification, achieved despite the low SRT (2–3 days), was initiated by the backseeding from the nitrification filters and facilitated by the decreased oxygen demand of the influent organics used for denitrification. With the improved activated sludge denitrification, methanol demand could be decreased to about half of the initial value. With the increased efficiency of the activated sludge pre-denitrification, plant effluent COD levels decreased from 40–70 mg l−1 to < 30–45 mg l−1 due to the decreased likelihood of methanol overdosing in the denitrification filter