Converting biodegradable materials into electricity, microbial fuel cells (MFCs) present a promising technology for renewable energy production in specific applications. Unlike typical soluble substrates that have been used as electron donors in MFC studies, cellulose is unique because it requires a microbial consortium that can metabolize both an insoluble electron donor (cellulose) and electron acceptor (electrode). In this study, electricity generation and the microbial ecology of cellulose-fed MFCs were analyzed using a defined co-culture of Clostridium cellulolyticum and Geobacter sulfurreducens. Fluorescent in situ hybridization and quantitative PCR showed that when particulate MN301 cellulose was used as sole substrate, most Clostridium cells were found adhered to cellulose particles in suspension, while most Geobacter cells were attached to the electrode. By comparison, both bacteria resided in suspension and biofilm samples when soluble carboxymethyl cellulose was used. This distinct function-related distribution of the bacteria suggests an opportunity to optimize reactor operation by settling cellulose and decanting supernatant to extend cellulose hydrolysis and improve cellulose-electricity conversion.
Article navigation
Research Article|
August 01 2008
Electricity production and microbial biofilm characterization in cellulose-fed microbial fuel cells
Z. Ren
;
1
Department of Civil and Environmental Engineering, The Pennsylvania State University, 212 Sackett Building, University Park, Pennsylvania, 16802, USA E-mail: lms346@psu.edu; jregan@engr.psu.edu
E-mail: zzr101@psu.edu
Search for other works by this author on:
L. M. Steinberg
;
L. M. Steinberg
1
Department of Civil and Environmental Engineering, The Pennsylvania State University, 212 Sackett Building, University Park, Pennsylvania, 16802, USA E-mail: lms346@psu.edu; jregan@engr.psu.edu
Search for other works by this author on:
J. M. Regan
J. M. Regan
1
Department of Civil and Environmental Engineering, The Pennsylvania State University, 212 Sackett Building, University Park, Pennsylvania, 16802, USA E-mail: lms346@psu.edu; jregan@engr.psu.edu
Search for other works by this author on:
Water Sci Technol (2008) 58 (3): 617-622.
Citation
Z. Ren, L. M. Steinberg, J. M. Regan; Electricity production and microbial biofilm characterization in cellulose-fed microbial fuel cells. Water Sci Technol 1 August 2008; 58 (3): 617–622. doi: https://doi.org/10.2166/wst.2008.431
Download citation file:
Close
Citation
Z. Ren, L. M. Steinberg, J. M. Regan; Electricity production and microbial biofilm characterization in cellulose-fed microbial fuel cells. Water Sci Technol 1 August 2008; 58 (3): 617–622. doi: https://doi.org/10.2166/wst.2008.431
Download citation file:
Close