The adsorption of Pb(II) by two different biomaterials, reed (Phragmites australis) and brown seaweed (Sargassum horneri) biomass pretreated with CaCl2, were compared in an attempt to explain the differences in adsorption performance between the two biosorbents. A very interesting characteristic was found in their individual adsorption performances; the Pb(II) adsorption capacity of brown seaweed (Qmax=0.45 mmol/g) was much higher than that of reed (Qmax=0.05 mmol/g), but its adsorption affinity (b=112 L/mmol) was much lower compared with that of reed (b=471 L/mmol). To elucidate the mechanism, the elemental components, ion exchange phenomenon and roles of functional groups of these two biosorbents were compared. The higher Pb(II) adsorption by brown seaweed could be due to its richness in total functional groups and calcium contents on its surface. In contrast, the functional complexity, higher zeta potential and pKa value (deprotonation state) of reed are believed to lead to its high adsorption affinity.