Fabrication of polyvinylidene fluoride (PVDF) hydrophobic asymmetric hollow fiber membranes was studied by introducing inorganic salt LiCl and water soluble polymer polyethylene glycol (PEG) 1500, using N,N-dimethylacetamide (DMAc) as solvent and tap water as the coagulation medium. The membranes properties also were tested and characterized. It is found that the non-solvent additive can increase membranes porosity, ether LiCl or PEG 1500. Because of the addition of PEG 1500, the PVDF membranes obtained a rough topography on the membrane surface and the contact angle of the PVDF membranes increased to 113.50° compared to 89.82° of the PVDF membranes spun without an additive. During direct contact membrane distillation (DCMD) of 0.6 M sodium chloride solution, the PVDF membranes spun with PEG 1500 as a non-solvent additive achieved higher water permeation flux compared to the membranes spun from PVDF/DMAc and PVDF/DMAC/LiCl dopes, but the latter two membranes exhibited higher salt rejection rate.