The effluent of a 500 kW biogas plant is treated with a solid separation, a micro filtration and a reverse osmosis to achieve nutrient recovery and an effluent quality which should meet disposal quality into public water bodies. After the reverse osmosis, the ammonium concentration is still high (NH4-N = 467 mg/l), amongst other cations (K+=85 mg/l; Na+=67 mg/l; Mg2 + =0.74 mg/l; Ca2 + =1.79 mg/l). The aim of this study was to remove this ammonium by ion exchange. Acidic gel cation exchange resins and clinoptilolite were tested in column experiments to evaluate their capacity, flow rates and pH. Amberjet 1,500 H was the most efficient resin, 57 BV of the substrate could be treated, 1.97 mol NH4-N/l resin were removed. The ammonium removal was more than 99% and the quality of the effluent was very satisfactory (NH4-N < 2 mg/l). The breakthrough of the observed parameters happened suddenly, the order was sodium—pH—ammonium—potassium. The sharp increase of the pH facilitates the online control, while the change in conductivity is less significant. A regeneration with 3 bed volumes of 2  M HCl recovered 91.7% of the original cation exchange capacity.