It is state of the art to evaluate and optimise sewer systems with urban drainage models. Since spill flow data is essential in the calibration process of conceptual models it is important to enhance the quality of such data. A wide spread approach is to calculate the spill flow volume by using standard weir equations together with measured water levels. However, these equations are only applicable to combined sewer overflow (CSO) structures, whose weir constructions correspond with the standard weir layout. The objective of this work is to outline an alternative approach to obtain spill flow discharge data based on measurements with a sonic depth finder. The idea is to determine the relation between water level and rate of spill flow by running a detailed 3D computational fluid dynamics (CFD) model. Two real world CSO structures have been chosen due to their complex structure, especially with respect to the weir construction. In a first step the simulation results were analysed to identify flow conditions for discrete steady states. It will be shown that the flow conditions in the CSO structure change after the spill flow pipe acts as a controlled outflow and therefore the spill flow discharge cannot be described with a standard weir equation. In a second step the CFD results will be used to derive rating curves which can be easily applied in everyday practice. Therefore the rating curves are developed on basis of the standard weir equation and the equation for orifice-type outlets. Because the intersection of both equations is not known, the coefficients of discharge are regressed from CFD simulation results. Furthermore, the regression of the CFD simulation results are compared with the one of the standard weir equation by using historic water levels and hydrographs generated with a hydrodynamic model. The uncertainties resulting of the wide spread use of the standard weir equation are demonstrated.

This content is only available as a PDF.