The process of platinum group metal (PGM) refining can be up to 99.99% efficient at best, and although it may seem small, the amount of valuable metal lost to waste streams is appreciable enough to warrant recovery. The method currently used to remove entrained metal ions from refinery wastewaters, chemical precipitation, is not effective for selective recovery of PGMs. The yeast Saccharomyces cerevisiae has been found capable of sorbing numerous precious and base metals, and is a cheap and abundant source of biomass. In this investigation, S. cerevisiae was immobilised using polyethyleneimine and glutaraldehyde to produce a suitable sorbent, capable of high platinum uptake (150–170 mg/g) at low pH (<2). The sorption mechanism was found to be a chemical reaction, which made effective desorption impossible. When applied to PGM refinery wastewater, two key wastewater characteristics limited the success of the sorption process; high inorganic ion content and complex speciation of the platinum ions. The results proved the concept principle of platinum recovery by immobilised yeast biosorption and indicated that a more detailed understanding of the platinum speciation within the wastewater is required before biosorption can be applied. Overall, the sorption of platinum by the S. cerevisiae sorbent was demonstrated to be highly effective in principle, but the complexity of the wastewater requires that pretreatment steps be taken before the successful application of this process to industrial wastewater.

This content is only available as a PDF.