This work suggests a procedure to correctly calibrate the parameters of a one-dimensional MBBR dynamic model in nitrification treatment. The study deals with the MBBR configuration with two reactors in series, one for carbon treatment and the other for nitrogen treatment. Because of the influence of the first reactor on the second one, the approach needs a specific calibration strategy. Firstly, a comparison between measured values and simulated ones obtained with default parameters has been carried out. Simulated values of filtered COD, NH4-N and dissolved oxygen are underestimated and nitrates are overestimated compared with observed data. Thus, nitrifying rate and oxygen transfer into the biofilm are overvalued. Secondly, a sensitivity analysis was carried out for parameters and for COD fractionation. It revealed three classes of sensitive parameters: physical, diffusional and kinetic. Then a calibration protocol of the MBBR dynamic model was proposed. It was successfully tested on data recorded at a pilot-scale plant and a calibrated set of values was obtained for four parameters: the maximum biofilm thickness, the detachment rate, the maximum autotrophic growth rate and the oxygen transfer rate.

This content is only available as a PDF.