This work describes the use of a novel palygorskite, a type of magnesium aluminium silicate clay possessing a high specific surface area and pore surface activity, as a low cost and highly efficient adsorbent for hydrogen sulfide (H2S) removal. Adsorption of H2S on palygorskite pretreated with acid or base was investigated in a fixed bed adsorber. The samples after base pretreatment had better dynamic adsorption performances than raw material and samples pretreated with acid. The H2S adsorption capacity decreased with an increase in inlet H2S concentration. This can be interpreted by the fact that H2S adsorption on the surface of palygorskite is chemisorption. The adsorption capacity increased from 25 to 50 °C, then decreased from 50 to 100 °C, which indicates that chemisorption took place and its better reaction temperature was around 50 °C.

This content is only available as a PDF.