Novel monodispersed pompon-like magnetite/chitosan (Fe3O4/CS) composite nanoparticles were synthesized by a solvothermal method and used as adsorbents for the removal of toxic sodium pentachlorophenate (PCP-Na) from aqueous media. The adsorption behavior of PCP-Na on Fe3O4/CS obeyed the Langmuir isotherm and fitted the pseudo-second-order kinetics model. Thermodynamic parameters showed that the adsorption process was exothermic and spontaneous. Moreover, the adsorption was strongly pH-dependent. The results of XPS, thermodynamics, pH-dependent and desorption studies suggested that electrostatic attraction, hydrogen bonding and π-π interactions were all believed to play a role in PCP-Na adsorption on Fe3O4/CS. Having a saturation magnetization of 22.2 emu · g−1, the Fe3O4/CS can be easily separated from water with magnets within 2 min. The adsorption equilibrium was achieved quite rapidly (within 30 min) and the maximum removal of PCP-Na (91.5%) was obtained at 25 °C and pH 6.5. The Fe3O4/CS investigated can be used to remove PCP-Na and other contaminants from wastewater.

This content is only available as a PDF.

Supplementary data