Algal monocultures (Chlorella sorokiniana and Botryococcus braunii) and algal communities native to clarifiers of a wastewater treatment plant were batch cultivated in (1) clarified effluent following a biochemical oxygen demand (BOD) removal reactor post-BOD removal clarified effluent (PBCE), (2) clarified effluent following a nitrification reactor post-nitrification clarified effluent (PNCE), and (3) a reference media (RM). After 12 days, all algal species achieved nitrogen removal between 68 and 82% in PBCE and 37 and 99% in PNCE, and phosphorus removal between 91 and 100% in PBCE and 60 and 100% in PNCE. The pH of the wastewater samples increased above 9.8 after cultivation of each species, which likely aided ammonia volatilization and phosphorus adsorption. Both monocultures grew readily with wastewater as a feedstock, but B. braunii experienced significant crowding from endemic fauna. In most cases, native algal species' nutrient removal efficiency was competitive with augmented algal monocultures, and in some cases achieved a higher biomass yield, demonstrating the potential to utilize native species for nutrient polishing and algal biomass production.

This content is only available as a PDF.