Abstract
During UV disinfection, the required UV dose in terms of fluence depends upon the species of bacteria spore and protozoa. To rank their UV disinfection sensitivity, spore sensitivity index (SPSI) and protozoan sensitivity index (PSI) are defined. For spores, shoulder effect exists, therefore, SPSI is defined as the ratio between the ki of any spores for the linear portion of the dose response curve to the kir of Bacillus subtilis as the reference spore. After statistical analysis, the fluence of any spore can be predicted by SPSI through equation, H = (0.8358 ± 0.126)*LogI*SPSI + H0. PSI is defined as the ratio between the inactivation rate constants of a protozoa in reference to that of Cryptosporidium parvum. The equation predicting the fluence of any protozoa in reference to Cryptosporidium parvum is: H = 107.45*(3.86 ± 2.68)*LogI/PSI. Two regression equations suggest that protozoa require significantly higher UV dose than bacteria spores.
HIGHLIGHTS
UV sensitivity index of bacteria spore and protozoa were defined.
The UV fluence could be predicted by the UV sensitivity indexes.
Protozoa required significantly higher UV dose than that required by spores.
Graphical Abstract
INTRODUCTION
UV disinfection technology becomes more and more important in water and wastewater industries, because UV radiation is an effective inactivation process against pathogenic micro-organisms such as Cryptosporidium and Giardia which poses a major threat to the safety of drinking water (Lonnen et al. 2005). To determine the inactivation equivalent fluence in UV disinfection system is more complex than medium pressure mercury vapor polychromatic. Because the spectral sensitivity of the microorganisms should be known toward the various wavelengths emitted by the medium pressure lamp as well as the spectral transmittance of the water (Mamane-Gravetz et al. 2005). Different spores and protozoa require different UV irradiation doses, depending upon the cultivation method used. The difference in UV susceptibility may also be related to the individual spectral UV sensitivity of the spores and protozoa (Cabaj et al. 2001, 2002).
Currently, the relationship between the fluence required for different spores and protozoan at a specific Log I have been reported in various publications. Some papers reported the UV dose and response data. The UV disinfection of different spores and protozoa at different degrees of Log I was published by Malayeri et al. (2016). This current research aims to develop a simple and universal model to systematically predict the fluence required to achieve specific reduction log I by using the spores sensitive index (SPSI) and protozoan sensitive index (PSI) during UV disinfection. Two independent universal equations were developed for fluence required to achieve a specific inactivation level Log I for different spores and protozoan in wastewater by using Bacillus subtilis and Cryptosporidium parvum as reference spores and protozoan, respectively.
MATERIAL AND METHODS
Databases
The database developed by Malayeri et al. (2016) was used to obtain a uniform set of first-order inactivation rate constants of spores and protozoa during UV disinfection. The inactivation rate constants of other spores and protozoa were divided by the mean kr as a reference spores and protozoa to derive their corresponding SPSI. The SPSI developed was then used to derive the statistical equation between Hi/Hr and SPSI and Log I.
Spores mathematic model
Equation (7) suggests that the ratio between the fluence differences required for any spore is proportional to the ratio of their inactivation rate constants at the linear portion, if the same level inactivation rate of Log I is to be achieved for the specific spore.
Since the shoulder broadness, Hor, was cancelled to each other, Equation (13) indicates that the predictive model is independent of Hor.
Protozoa mathematic model
Statistic analysis
By using the database which compiled by Malayeri et al. (2016), the inactivation UV dose at different Log I was modelled through a linear correlation analyses using SPSS of the IBM. The inactivation rate constant of each spore and protozoan were divided by the corresponding inactivation rate constants of the reference spores such as Bacillus subtilis, or the reference protozoa such as Cryptosporidium parvum, respectively. The regression analysis was conducted between Hi/Hr and SPSI using linear to determine which model fits best to the data sets. Once the model was chosen, it was used throughout the rest of the statistical analysis. The same statistical analysis procedure was applied for regression analysis between the required fluence and the 1/PSI.
RESULTS AND DISCUSSIONS
Spores sensitivity index
The calculated values of kH and b are listed under their corresponding spores in the second and third column, respectively. To facilitate the linear regression, the coefficients of ki = 1/kH(mJ/cm2) and the shoulder broadness, H0 = b/kH (mJ/cm2), of Equation (3) are presented in the Table 1 so that SPSI can be defined for each spores.
Inactivation kinetics . | -Log I = -kH + b . | H = kiLog I + H0 . | Reference . | ||
---|---|---|---|---|---|
kH(cm2/mJ) . | B . | ki = 1/kH(mJ/cm2) . | H0 = b/kH(mJ/cm2) . | ||
Bacillus subtillis as reference | 11.235 | 8.372 | 0.089 | 0.745 | |
Spores for model development | |||||
Clostridium pasteurianum | 1.65 | 1.83 | 0.606 | 1.109 | Clauß (2006) |
Streptomyces griseus ATCC10137 | 3.25 | 5.67 | 0.308 | 1.745 | Clauß (2006) |
Bacillus strophaeus ATCC9372 | 8 | 1.33 | 0.125 | 0.166 | Sholtes et al. (2016) |
Sterne | 12 | 15 | 0.083 | 1.25 | Nicholson & Galeano (2003) |
Bacillus astrophaeus ATCC9372 | 16.5 | 5.33 | 0.061 | 0.323 | Zhang et al. (2014) |
34F2(sterne) method: Schaeffer's sporulation medium | 28.5 | 10.67 | 0.035 | 0.374 | Rose & O'Connell (2009) |
Thermoactionmyces | 30 | 26.67 | 0.033 | 0.889 | Clauß (2006) |
Bacillus cereus ATCC11778 | 44 | 7 | 0.023 | 0.159 | Clauß (2006) |
Bacillus pumilus ATCC27142 | 68 | 0.67 | 0.015 | 0.010 | Boczek et al. (2016) |
Aspergillus brasiliensis ATCC16404 | 85.5 | 42.67 | 0.011 | 0.499 | Taylor-Edmonds et al. (2015) |
Inactivation kinetics . | -Log I = -kH + b . | H = kiLog I + H0 . | Reference . | ||
---|---|---|---|---|---|
kH(cm2/mJ) . | B . | ki = 1/kH(mJ/cm2) . | H0 = b/kH(mJ/cm2) . | ||
Bacillus subtillis as reference | 11.235 | 8.372 | 0.089 | 0.745 | |
Spores for model development | |||||
Clostridium pasteurianum | 1.65 | 1.83 | 0.606 | 1.109 | Clauß (2006) |
Streptomyces griseus ATCC10137 | 3.25 | 5.67 | 0.308 | 1.745 | Clauß (2006) |
Bacillus strophaeus ATCC9372 | 8 | 1.33 | 0.125 | 0.166 | Sholtes et al. (2016) |
Sterne | 12 | 15 | 0.083 | 1.25 | Nicholson & Galeano (2003) |
Bacillus astrophaeus ATCC9372 | 16.5 | 5.33 | 0.061 | 0.323 | Zhang et al. (2014) |
34F2(sterne) method: Schaeffer's sporulation medium | 28.5 | 10.67 | 0.035 | 0.374 | Rose & O'Connell (2009) |
Thermoactionmyces | 30 | 26.67 | 0.033 | 0.889 | Clauß (2006) |
Bacillus cereus ATCC11778 | 44 | 7 | 0.023 | 0.159 | Clauß (2006) |
Bacillus pumilus ATCC27142 | 68 | 0.67 | 0.015 | 0.010 | Boczek et al. (2016) |
Aspergillus brasiliensis ATCC16404 | 85.5 | 42.67 | 0.011 | 0.499 | Taylor-Edmonds et al. (2015) |
Depending on the coefficient of reference data and Table 1, SPSI can be defined in Table 2.
SPSI = ki/kir . | ||
---|---|---|
Reference spores: Bacillus subtilis . | SPSI . | Reference . |
Clostridium pasteurianum ATCC6013 | 6.809 | Clauß (2006) |
Streptomyces griseus ATCC10137 | 3.457 | Clauß (2006) |
Bacillus astrophaeus ATCC9372 | 1.404 | Sholtes et al. (2016) |
Sterne | 0.936 | Nicholson & Galeano (2003) |
Bacillus astrophaeus ATCC9372 | 0.680 | Zhang et al. (2014) |
34F2 (sterne) method: Schaeffer's sporulation medium | 0.394 | Rose & O'Connell (2009) |
Thermoactinomyces vulgaris ATCC43649 | 0.374 | Clauß (2006) |
Bacillus cereus ATCC11778 | 0.255 | Clauß (2006) |
Bacillus pumilus ATCC27142 | 0.165 | Boczek et al. (2016) |
Aspergillus brasiliensis ATCC16404 | 0.131 | Taylor-Edmonds et al. (2015) |
SPSI = ki/kir . | ||
---|---|---|
Reference spores: Bacillus subtilis . | SPSI . | Reference . |
Clostridium pasteurianum ATCC6013 | 6.809 | Clauß (2006) |
Streptomyces griseus ATCC10137 | 3.457 | Clauß (2006) |
Bacillus astrophaeus ATCC9372 | 1.404 | Sholtes et al. (2016) |
Sterne | 0.936 | Nicholson & Galeano (2003) |
Bacillus astrophaeus ATCC9372 | 0.680 | Zhang et al. (2014) |
34F2 (sterne) method: Schaeffer's sporulation medium | 0.394 | Rose & O'Connell (2009) |
Thermoactinomyces vulgaris ATCC43649 | 0.374 | Clauß (2006) |
Bacillus cereus ATCC11778 | 0.255 | Clauß (2006) |
Bacillus pumilus ATCC27142 | 0.165 | Boczek et al. (2016) |
Aspergillus brasiliensis ATCC16404 | 0.131 | Taylor-Edmonds et al. (2015) |
Transformation of H into ΔH/ΔHr
To assess which set of SPSI is the best, following the Equation (3), Table 3 is presented. Through Table 4, H can be transformed to ΔH/ΔHr as shown in Table 4.
Fluence difference . | ΔH = H-H0 . | ||||
---|---|---|---|---|---|
Log I . | 0 . | 1 . | 2 . | 3 . | Reference . |
34F2(sterne) method: Schaeffer's sporulation medium | 0.374 | 22.625 | 35.625 | 79.626 | Rose & O'Connell (2009) |
Aspergillus brasiliensis ATCC16404 | 0.499 | 121.501 | 225.501 | 292.501 | Taylor-Edmonds et al. (2015) |
Bacillus astrophaeus ATCC9372 | 0.323 | 21.676 | 37.677 | 54.677 | Zhang et al. (2014) |
Bacillus cereus ATCC11778 | 0.159 | 51.841 | 92.841 | 139.841 | Clauß (2006) |
Bacillus pumilus ATCC27142 | 0.010 | 67.834 | 137.990 | 203.990 | Boczek et al. (2016) |
Bacillus strophaeus ATCC9372 | 0.166 | 9.833 | 15.833 | 25.83375 | Sholtes et al. (2016) |
Bacillus subtilis | 0.745 | 17.1 | 28.09 | 38.753 | |
Clostridium pasteurianum | 1.109 | 2.291 | 4.191 | 5.591 | Clauß (2006) |
Sterne | 1.25 | 26.75 | 35.75 | 50.75 | Nicholson & Galeano (2003) |
Streptomyces griseus ATCC10137 | 0 | 6.755 | 11.255 | 13.255 | Clauß (2006) |
Thermoactionmyces | 1.745 | 54.111 | 89.111 | 114.111 | Clauß (2006) |
Fluence difference . | ΔH = H-H0 . | ||||
---|---|---|---|---|---|
Log I . | 0 . | 1 . | 2 . | 3 . | Reference . |
34F2(sterne) method: Schaeffer's sporulation medium | 0.374 | 22.625 | 35.625 | 79.626 | Rose & O'Connell (2009) |
Aspergillus brasiliensis ATCC16404 | 0.499 | 121.501 | 225.501 | 292.501 | Taylor-Edmonds et al. (2015) |
Bacillus astrophaeus ATCC9372 | 0.323 | 21.676 | 37.677 | 54.677 | Zhang et al. (2014) |
Bacillus cereus ATCC11778 | 0.159 | 51.841 | 92.841 | 139.841 | Clauß (2006) |
Bacillus pumilus ATCC27142 | 0.010 | 67.834 | 137.990 | 203.990 | Boczek et al. (2016) |
Bacillus strophaeus ATCC9372 | 0.166 | 9.833 | 15.833 | 25.83375 | Sholtes et al. (2016) |
Bacillus subtilis | 0.745 | 17.1 | 28.09 | 38.753 | |
Clostridium pasteurianum | 1.109 | 2.291 | 4.191 | 5.591 | Clauß (2006) |
Sterne | 1.25 | 26.75 | 35.75 | 50.75 | Nicholson & Galeano (2003) |
Streptomyces griseus ATCC10137 | 0 | 6.755 | 11.255 | 13.255 | Clauß (2006) |
Thermoactionmyces | 1.745 | 54.111 | 89.111 | 114.111 | Clauß (2006) |
Fluence difference . | ΔH = H-H0 . | ||||
---|---|---|---|---|---|
Log I . | 0 . | 1 . | 2 . | 3 . | Reference . |
ΔHr, Bacillus subtilis as reference | |||||
Bacillus subtilis | 0.745 | 16.354 | 37.703 | 52.009 | Zhang et al. (2014) |
Thermoactionmyces | 1.745 | 0.302 | 0.423 | 0.455 | Clauß (2006) |
Aspergillus brasiliensis ATCC16404 | 0.499 | 0.135 | 0.167 | 0.177 | Taylor-Edmonds et al. (2015) |
34F2(sterne) method: Schaeffer's sporulation medium | 0.374 | 0.722 | 1.058 | 0.653 | Rose & O'Connell (2009) |
Bacillus astrophaeus ATCC9372 | 0.323 | 0.754 | 1 | 0.951 | Zhang et al. (2014) |
Bacillus strophaeus ATCC9372 | 0.166 | 1.663 | 2.381 | 2.013 | Sholtes et al. (2016) |
Bacillus cereus ATCC11778 | 0.159 | 0.315 | 0.406 | 0.371 | Clauß (2006) |
Clostridium pasteurianum | 1.109 | 7.139 | 8.996 | 9.302 | Clauß (2006) |
Sterne | 1.25 | 0.611 | 1.954 | 1.024 | Nicholson & Galeano (2003) |
Bacillus pumilus ATCC27142 | 0.010 | 0.241 | 0.273 | 0.254 | Boczek et al. (2016) |
Streptomyces griseus ATCC10137 | 0 | 2.421 | 3.349 | 3.923 | Clauß (2006) |
Fluence difference . | ΔH = H-H0 . | ||||
---|---|---|---|---|---|
Log I . | 0 . | 1 . | 2 . | 3 . | Reference . |
ΔHr, Bacillus subtilis as reference | |||||
Bacillus subtilis | 0.745 | 16.354 | 37.703 | 52.009 | Zhang et al. (2014) |
Thermoactionmyces | 1.745 | 0.302 | 0.423 | 0.455 | Clauß (2006) |
Aspergillus brasiliensis ATCC16404 | 0.499 | 0.135 | 0.167 | 0.177 | Taylor-Edmonds et al. (2015) |
34F2(sterne) method: Schaeffer's sporulation medium | 0.374 | 0.722 | 1.058 | 0.653 | Rose & O'Connell (2009) |
Bacillus astrophaeus ATCC9372 | 0.323 | 0.754 | 1 | 0.951 | Zhang et al. (2014) |
Bacillus strophaeus ATCC9372 | 0.166 | 1.663 | 2.381 | 2.013 | Sholtes et al. (2016) |
Bacillus cereus ATCC11778 | 0.159 | 0.315 | 0.406 | 0.371 | Clauß (2006) |
Clostridium pasteurianum | 1.109 | 7.139 | 8.996 | 9.302 | Clauß (2006) |
Sterne | 1.25 | 0.611 | 1.954 | 1.024 | Nicholson & Galeano (2003) |
Bacillus pumilus ATCC27142 | 0.010 | 0.241 | 0.273 | 0.254 | Boczek et al. (2016) |
Streptomyces griseus ATCC10137 | 0 | 2.421 | 3.349 | 3.923 | Clauß (2006) |
Correlation analysis between ΔH/ΔHr and SPSI
Protozoa sensitivity index
The protozoa sensitivity index can be defined by Equation (3). In Table 5 are listed the ki and b, and after linear regression, ki and H0 can be calculated.
. | -Log I = -kH + b . | H = kiLog I + H0 . | |||
---|---|---|---|---|---|
Inactivation kinetics . | kH(cm2/mJ) . | b . | ki = 1/kH(mJ/cm2) . | H0 = b/kH(mJ/cm2) . | Reference . |
Cryptosporidium parvum as reference | 0.475 | 0.869 | 2.105 | 1.829 | |
Protozoa for model development | |||||
Acanthamoeba castellanii CCAP15342 (life stage: cysts) | 23 | 24.33 | 0.043 | 1.058 | Cervero-Aragó et al. (2014) |
Acanthamoeba spp. 155 (life stage: trophozoites) | 19 | 3.67 | 0.053 | 0.193 | Cervero-Aragó et al. (2014) |
Acanthamoeba spp. 155 (life stage: cysts) | 32.5 | 1.67 | 0.031 | 0.051 | Cervero-Aragó et al. (2014) |
Giardia lamblia | 1.25 | 0 | 0.8 | 0 | Cervero-Aragó et al. (2014) |
Giardia lamblia | 1 | 0.53 | 1 | 0.53 | Campbell & Wallis (2002) |
Naegleria fowleri | 5 | 3 | 0.2 | 0.6 | Mofidi et al. (2002) |
Toxoplasma gondii oocysts | 4.9 | 2.6 | 0.204 | 0.530 | Mofidi et al. (2002) |
Toxoplasma gondii | 3.3 | 0.13 | 0.303 | 0.039 | Amoah et al. (2005) |
Vermamoeba vermiformis CCAP 15434 | 7.5 | 3.67 | 0.133 | 0.489 | Ware et al. (2010) |
Vermamoeba vermiformis 195 (life stage: trophozoites) | 7 | 3 | 0.143 | 0.429 | Cervero-Aragó et al. (2014) |
Vermamoeba vermiformis 195 (life stage: cysts) | 22 | 12 | 0.045 | 0.545 | Cervero-Aragó et al. (2014) |
. | -Log I = -kH + b . | H = kiLog I + H0 . | |||
---|---|---|---|---|---|
Inactivation kinetics . | kH(cm2/mJ) . | b . | ki = 1/kH(mJ/cm2) . | H0 = b/kH(mJ/cm2) . | Reference . |
Cryptosporidium parvum as reference | 0.475 | 0.869 | 2.105 | 1.829 | |
Protozoa for model development | |||||
Acanthamoeba castellanii CCAP15342 (life stage: cysts) | 23 | 24.33 | 0.043 | 1.058 | Cervero-Aragó et al. (2014) |
Acanthamoeba spp. 155 (life stage: trophozoites) | 19 | 3.67 | 0.053 | 0.193 | Cervero-Aragó et al. (2014) |
Acanthamoeba spp. 155 (life stage: cysts) | 32.5 | 1.67 | 0.031 | 0.051 | Cervero-Aragó et al. (2014) |
Giardia lamblia | 1.25 | 0 | 0.8 | 0 | Cervero-Aragó et al. (2014) |
Giardia lamblia | 1 | 0.53 | 1 | 0.53 | Campbell & Wallis (2002) |
Naegleria fowleri | 5 | 3 | 0.2 | 0.6 | Mofidi et al. (2002) |
Toxoplasma gondii oocysts | 4.9 | 2.6 | 0.204 | 0.530 | Mofidi et al. (2002) |
Toxoplasma gondii | 3.3 | 0.13 | 0.303 | 0.039 | Amoah et al. (2005) |
Vermamoeba vermiformis CCAP 15434 | 7.5 | 3.67 | 0.133 | 0.489 | Ware et al. (2010) |
Vermamoeba vermiformis 195 (life stage: trophozoites) | 7 | 3 | 0.143 | 0.429 | Cervero-Aragó et al. (2014) |
Vermamoeba vermiformis 195 (life stage: cysts) | 22 | 12 | 0.045 | 0.545 | Cervero-Aragó et al. (2014) |
Using reference data and Table 5, PSI can be defined in Table 6.
PSI = ki/kir . | |||
---|---|---|---|
Reference protozoa: cryptosporidium parvum . | PSI . | 1/PSI . | Reference . |
Giardia lamblia | 0.475 | 2.105 | Mofidi et al. (2002) |
Toxoplasma gondii | 0.144 | 6.947 | Ware et al. (2010) |
Toxoplasma gondii oocysts | 0.097 | 10.316 | Amoah et al. (2005) |
Naegleria fowleri | 0.095 | 10.526 | Mofidi et al. (2002) |
Vermamoeba vermiformis 195 (life stage: trophozoites) | 0.068 | 14.737 | Cervero-Aragó et al. (2014) |
Vermamoeba vermiformis CCAP 15434 | 0.063 | 15.789 | Cervero-Aragó et al. (2014) |
Vermamoeba vermiformis 195 (life stage: cysts) | 0.055 | 46.316 | Cervero-Aragó et al. (2014) |
Giardia lamblia | 0.38 | 2.632 | Campbell & Wallis (2002) |
Acanthamoeba spp. 155 (life stage: trophozoites) | 0.025 | 40.000 | Cervero-Aragó et al. (2014) |
Acanthamoeba castellanii CCAP15342 (life stage: trophozoites) | 0.023 | 42.105 | Cervero-Aragó et al. (2014) |
Acanthamoeba castellanii CCAP15342 (life stage: cysts) | 0.021 | 48.421 | Cervero-Aragó et al. (2014) |
Acanthamoeba spp. 155 (life stage: cysts) | 0.015 | 68.421 | Cervero-Aragó et al. (2014) |
PSI = ki/kir . | |||
---|---|---|---|
Reference protozoa: cryptosporidium parvum . | PSI . | 1/PSI . | Reference . |
Giardia lamblia | 0.475 | 2.105 | Mofidi et al. (2002) |
Toxoplasma gondii | 0.144 | 6.947 | Ware et al. (2010) |
Toxoplasma gondii oocysts | 0.097 | 10.316 | Amoah et al. (2005) |
Naegleria fowleri | 0.095 | 10.526 | Mofidi et al. (2002) |
Vermamoeba vermiformis 195 (life stage: trophozoites) | 0.068 | 14.737 | Cervero-Aragó et al. (2014) |
Vermamoeba vermiformis CCAP 15434 | 0.063 | 15.789 | Cervero-Aragó et al. (2014) |
Vermamoeba vermiformis 195 (life stage: cysts) | 0.055 | 46.316 | Cervero-Aragó et al. (2014) |
Giardia lamblia | 0.38 | 2.632 | Campbell & Wallis (2002) |
Acanthamoeba spp. 155 (life stage: trophozoites) | 0.025 | 40.000 | Cervero-Aragó et al. (2014) |
Acanthamoeba castellanii CCAP15342 (life stage: trophozoites) | 0.023 | 42.105 | Cervero-Aragó et al. (2014) |
Acanthamoeba castellanii CCAP15342 (life stage: cysts) | 0.021 | 48.421 | Cervero-Aragó et al. (2014) |
Acanthamoeba spp. 155 (life stage: cysts) | 0.015 | 68.421 | Cervero-Aragó et al. (2014) |
Transformation of H into H/Hr
To assess which set of PSI is the best, following the Equation (3), Table 7 is presented. Through Table 7, H can be transformed to H/Hr as shown in Table 8.
Fluence difference . | ||||
---|---|---|---|---|
Log I . | 1 . | 2 . | 3 . | Reference . |
Hr, Cryptosporidium parvum as reference | ||||
Cryptosporidium parvum | ||||
Acanthamoeba castellanii CCAP15342 (life stage: trophozoites) | 31.4 | 51.4 | 71.4 | Cervero-Aragó et al. (2014) |
Acanthamoeba castellanii CCAP15342 (life stage: cysts) | 43.942 | 73.942 | 89.942 | Cervero-Aragó et al. (2014) |
Acanthamoeba spp. 155 (life stage: trophozoites) | 27.807 | 30.807 | 65.807 | Cervero-Aragó et al. (2014) |
Acanthamoeba spp. 155 (life stage: cysts) | 33.948 | 66.949 | 98.948 | Cervero-Aragó et al. (2014) |
Giardia lamblia | 8 | 10 | 20 | Cervero-Aragó et al. (2014) |
Giardia lamblia | 0.97 | 1.47 | 3.47 | Mofidi et al. (2002) |
Naegleria fowleri | 7.4 | 12.4 | 17.4 | Mofidi et al. (2002) |
Toxoplasma gondii oocysts | 6.67 | 12,469 | 16.469 | Amoah et al. (2005) |
Toxoplasma gondii | 3.361 | 6.761 | 9.961 | Ware et al. (2010) |
Vermamoeba vermiformis CCAP 15434 | 10.511 | 18.511 | 25.510 | Cervero-Aragó et al. (2014) |
Vermamoeba vermiformis 195 (life stage: trophozoites) | 9.571 | 16.571 | 23.571 | Cervero-Aragó et al. (2014) |
Vermamoeba vermiformis 195 (life stage: cysts) | 31.455 | 59.454 | 75.455 | Cervero-Aragó et al. (2014) |
Fluence difference . | ||||
---|---|---|---|---|
Log I . | 1 . | 2 . | 3 . | Reference . |
Hr, Cryptosporidium parvum as reference | ||||
Cryptosporidium parvum | ||||
Acanthamoeba castellanii CCAP15342 (life stage: trophozoites) | 31.4 | 51.4 | 71.4 | Cervero-Aragó et al. (2014) |
Acanthamoeba castellanii CCAP15342 (life stage: cysts) | 43.942 | 73.942 | 89.942 | Cervero-Aragó et al. (2014) |
Acanthamoeba spp. 155 (life stage: trophozoites) | 27.807 | 30.807 | 65.807 | Cervero-Aragó et al. (2014) |
Acanthamoeba spp. 155 (life stage: cysts) | 33.948 | 66.949 | 98.948 | Cervero-Aragó et al. (2014) |
Giardia lamblia | 8 | 10 | 20 | Cervero-Aragó et al. (2014) |
Giardia lamblia | 0.97 | 1.47 | 3.47 | Mofidi et al. (2002) |
Naegleria fowleri | 7.4 | 12.4 | 17.4 | Mofidi et al. (2002) |
Toxoplasma gondii oocysts | 6.67 | 12,469 | 16.469 | Amoah et al. (2005) |
Toxoplasma gondii | 3.361 | 6.761 | 9.961 | Ware et al. (2010) |
Vermamoeba vermiformis CCAP 15434 | 10.511 | 18.511 | 25.510 | Cervero-Aragó et al. (2014) |
Vermamoeba vermiformis 195 (life stage: trophozoites) | 9.571 | 16.571 | 23.571 | Cervero-Aragó et al. (2014) |
Vermamoeba vermiformis 195 (life stage: cysts) | 31.455 | 59.454 | 75.455 | Cervero-Aragó et al. (2014) |
Fluence . | ||||
---|---|---|---|---|
Log I . | 1 . | 2 . | 3 . | Reference . |
ΔHr, Cryptosporidium parvum as reference | ||||
Acanthamoeba castellanii CCAP15342 (life stage: trophozoites) | 54.286 | 299.570 | 192.153 | Cervero-Aragó et al. (2014) |
Acanthamoeba castellanii CCAP15342 (life stage: cysts) | 75.970 | 430.951 | 242.054 | Cervero-Aragó et al. (2014) |
Acanthamoeba spp. 155 (life stage: trophozoites) | 48.074 | 179.549 | 177.100 | Cervero-Aragó et al. (2014) |
Acanthamoeba spp. 155 (life stage: cysts) | 58.692 | 390.191 | 266.292 | Cervero-Aragó et al. (2014) |
Giardia lamblia | 13.831 | 58.282 | 53.824 | Cervero-Aragó et al. (2014) |
Giardia lamblia | 1.677 | 8.567 | 9.338 | Mofidi et al. (2002) |
Naegleria fowleri | 12.793 | 72.270 | 46.827 | Mofidi et al. (2002) |
Toxoplasma gondii oocysts | 11.530 | 72.674 | 44.322 | Amoah et al. (2005) |
Toxoplasma gondii | 5.810 | 39.402 | 26.806 | Ware et al. (2010) |
Vermamoeba vermiformis CCAP 15434 | 18.171 | 107.884 | 68.654 | Cervero-Aragó et al. (2014) |
Vermamoeba vermiformis 195 (life stage: trophozoites) | 16.547 | 96.582 | 63.436 | Cervero-Aragó et al. (2014) |
Vermamoeba vermiformis 195 (life stage: cysts) | 54.380 | 346.514 | 203.065 | Cervero-Aragó et al. (2014) |
Fluence . | ||||
---|---|---|---|---|
Log I . | 1 . | 2 . | 3 . | Reference . |
ΔHr, Cryptosporidium parvum as reference | ||||
Acanthamoeba castellanii CCAP15342 (life stage: trophozoites) | 54.286 | 299.570 | 192.153 | Cervero-Aragó et al. (2014) |
Acanthamoeba castellanii CCAP15342 (life stage: cysts) | 75.970 | 430.951 | 242.054 | Cervero-Aragó et al. (2014) |
Acanthamoeba spp. 155 (life stage: trophozoites) | 48.074 | 179.549 | 177.100 | Cervero-Aragó et al. (2014) |
Acanthamoeba spp. 155 (life stage: cysts) | 58.692 | 390.191 | 266.292 | Cervero-Aragó et al. (2014) |
Giardia lamblia | 13.831 | 58.282 | 53.824 | Cervero-Aragó et al. (2014) |
Giardia lamblia | 1.677 | 8.567 | 9.338 | Mofidi et al. (2002) |
Naegleria fowleri | 12.793 | 72.270 | 46.827 | Mofidi et al. (2002) |
Toxoplasma gondii oocysts | 11.530 | 72.674 | 44.322 | Amoah et al. (2005) |
Toxoplasma gondii | 5.810 | 39.402 | 26.806 | Ware et al. (2010) |
Vermamoeba vermiformis CCAP 15434 | 18.171 | 107.884 | 68.654 | Cervero-Aragó et al. (2014) |
Vermamoeba vermiformis 195 (life stage: trophozoites) | 16.547 | 96.582 | 63.436 | Cervero-Aragó et al. (2014) |
Vermamoeba vermiformis 195 (life stage: cysts) | 54.380 | 346.514 | 203.065 | Cervero-Aragó et al. (2014) |
Correlation analysis between H/Hr and 1/PSI
Comparison with different bateria and virus
SPSI compare with bacteria sensitivity index (BSI)
For the previous study, the BSI used E. coli as the reference bacteria, the fluence recommended by the US EPA is used in the correlation analysis to obtain the following equation:
Compared with SPSI, the UV fluence is lower than BSI. As a result, it would significantly reduce the trial and error experiment in deciding which fluence should be used to achieve a specific inactivation rate Log I for a specific spores providing the corresponding SPSI is known.
PSI compare with virus sentivity index (VSI)
Obviously, to disinfect protozoa, more UV fluence is needed than bacteria spores. The major advantage of the method developed in this study is rooted in its dimensionless parameters such as Hi/Hr versus PSI.
CONCLUSIONS
Scientific analysis unveils a linear relationship between fluence required for inactivation of any spores and that required by reference spores such as Bacillus subtillis is proportional to the ratio of their corresponding inactivation rate constant ki/kir. The SPSI has been successfully used to predict the fluence. The developed model tends to overpredict the fluence required at low Log I while it would underpredict the fluence required as Log I level increased. Up to 3 Log I, the model underpredicts all the fluence with the maximal errors less than 15%. The PSI was defined as the ratio between the inactivation rate constants of a protozoa in reference to that of Cryptosporidium parvum. PSI can be used to rank the relative UV disinfection sensitivity. For example, most protozoa have a PSI greater than that of Cryptosporidium parvum, and if there are no protozoa, which has very low PSI, Cryptosporidium parvum should be used as an adequate indicator in the validation of a UV disinfection system. Using statistical equations developed in this paper, PSI can be used to accurately predict the fluence required, Hi, for any given protozoa at a specific Log I by using Equation (22).
CREDIT AUTHORSHIP CONTRIBUTION STATEMENT
Zhao Wang: statistical analysis and writing. Walter Z. Tang: conceptualization, methodology, statistical analysis, investigation, writing, review and editing, and supervision. Mika Sillanpää: review and editing, Jinze Li: review and editing.
DATA AVAILABILITY STATEMENT
All relevant data are included in the paper or its Supplementary Information.
CONFLICT OF INTEREST
The authors declare there is no conflict.