The preparation, modification and application of green polymers such as poly-lactic acid (PLA), chitosan (CS), and cellulose acetate (CA) for oily wastewater treatment is summed up in this review. Due to the low environmental pollution, good chemical resistivity, high hydrophobicity, and good capacity for water-oil emulsion separation of the presented polymers, it then highlights the various membrane production methods and their role in producing effective membranes, with a focus on recent advances in improving membrane properties through the addition of various Nano materials. As a result, the hydrophilic/hydrophobic properties that are critical in the oil separation mechanism are highlighted. Finally, it looks at the predictions and challenges in oil/water separation and recovery. These ideas are discussed with a focus on modern production methods and oil separation proficiency.

  • Recently, eco-friendly membranes play an important role in the positive environmental impact and environmental conservation. This review provides insights into understand of eco-friendly membrane applications for water–oil processing, where nanofiltration and ultrafiltration eco-friendly membrane systems are mostly applied to the treatment of oily-wastewater effluent.

Graphical Abstract

Graphical Abstract
Graphical Abstract
Ag NPs

Silver nanoparticles

Alg

Alginate

ALG

Sodium alginate

CA

Cellulose acetate

CaCO3

Calcium carbonate

CM

Cellulose membrane

CMC

Carboxymethylcellulose

CNF

Cellulose nanofiber

CNTs

Carbon nanotubes

CS

Chitosan

CST

Chitosan–TiO2

CT

Chitin

DMAc

Dimethylacetamide

DPA

Dopamine

DSD

Droplet size distribution

ER

Epoxy resin

Fe3O4

Iron oxide

FeCl3

Ferric chloride

FP

Filter paper

GA

Glutaraldehyde

GO

Graphene oxide

HDTMS

Hexadecyltrimethoxysilane

LDH

Layered double hydroxides

MCA

Modified cellulose acetate

MCE

Mixed cellulose membrane

MCS

Modified chitosan

MF

Microfiltration

MTS

Methyltrichlorosilane

NaCl

Sodium chloride

NaClO2

Sodium chlorite

NaOH

Sodium hydroxide

NBKP

Cellulose needle-leaf bleached kraft pulp

N-CQDs

Amino-functionalized carbon quantum dots

NF

Nanofiltration

OCA

Oil contact angle

PAN

Polyacrylonitrile

PBE

Propylene-based elastomer

PBS

Poly (butylene succinate)

PCL

Poly (ε-caprolactone)

PDA

Polydopamine

PDLA

Poly (D-lactic acid)

PEG

Poly (ethylene glycol)

PET

Polyethylene terephthalate

PHAs

Polyhydroxyalkanoates

PHB

Polyhydroxybutyrate

PLA

Poly lactic acid

PLGA

Poly (lactide-co-glycolide)

PPC

Polypropylene carbonate

PPF

Poly (propylene fumarate)

PPS

Polyphenylene sulfide

PPy

Polypyrrole

PS

Polystyrene

PSf

Polysulfone

PVA

Polyvinylpyrrolidone

PVDF

Polyvinylidene fluoride

PVDF-HFP

Poly (vinylidene fluoride-co-hexafluoropro-pylene)

RHs

Relative humidity

RO

Reverse osmosis

SeP

Sepiolite

SiO2

Silicon dioxide

SMPLA

Superhydrophobic and magnetic poly (lactic acid)

SNPs

Silica nanoparticles

SOCM

Superhydrophobic cellulose membrane

TA

Tannic acid

TEOS

Tetraethyl orthosilicate

TiO2

Titanium dioxide

UF

Ultrafiltration

UOCA

Underwater oil contact angle

USEPA

United States Environmental Protection Agency

WCA

Water contact angle

WO3

Tungsten oxide

XPS

X-ray photoelectron spectrometer

ZIF-8

Zeolite imidazole framework

Oily wastewater refers to wastewater that contains fats, greases, and oils in high concentrations, together with a variety of dissolved components (organic and/or inorganic) (Adetunji & Olaniran 2018; Wei et al. 2020). There are four types of oil-contaminated water (also known as ‘oily wastewater’): free oil, dispersed oil, emulsified oil, and dissolved oil (Saththasivam et al. 2016). These types are based on physical and chemical properties, with the droplet size distribution (DSD) being a major parameter (El-Naas et al. 2014). Free oil separates from water with ease and floats to the surface in calm conditions due to its lower specific gravity than water. The size of oil droplets in wastewater ranges between micron-sized particles and larger droplets (Al-Ani et al. 2020). The DSD of dispersed oil is normally in the range of a hundred to several hundred microns, and it is characterized such that it takes the form of droplets of oil in water (Li et al. 2015). While oil–water mixtures move through pipes or pumps, oiled wastewater or natural occurrences like agitation and wave action or operations which break up free oil droplets and distribute them generate dispersed oils. (Abdulredha et al. 2020). Emulsions can be formed by stabilizing the oil droplets in the dispersion or by coalescing them to produce free oil over time. Either mechanical or chemical stabilized emulsions are oil emulsions generated by dispersing oil droplets in water (Nikovska 2012; Loh et al. 2020). Conditions and relative proportions of oil and water components can produce various emulsions, including simple emulsions like o/w and w/o, as well as more complex emulsions like o/w/o. Simple emulsifiers, like oil–water and water–oil, are more widely used in petroleum, drug, and food industries than complex emulsions (Haghighat et al. 2020). There are no droplets of oil in the water when the oil dissolves in the water. Hydrocarbons that have one or more rings (benzene, for example), as well as aromatic hydrocarbons (naphthalene and organic acids) are the most common components of dissolved oil (Fakhru'l-Razi et al. 2009).

Industrial activities including petrochemical facilities, oil and gas refineries, food manufacturing, textiles, and leather production generate high quantities of oily wastewater as shown in Figure 1 (Yu et al. 2015; Adetunji & Olaniran 2021). Treatment of oily wastewaters in the oil and gas sector often involves using traditional oil-removing technologies like centrifugation, gravity separation, coagulation, and flotation to remove free and dispersed oil (Seddighi & Hejazi 2015).
Figure 1

Industrial activities generate oily wastewater.

Figure 1

Industrial activities generate oily wastewater.

Close modal

The United States Environmental Protection Agency (USEPA) classifies (oil-contaminated) wastewater as among the most toxic and harmful wastewaters in the environment. When oily wastewater is incorrectly released, it pollutes the air and contaminates groundwater and surface waters, posing a serious threat to the surrounding environment and human health (Poulton et al. 2002; Robertson et al. 2007; Hejnfelt & Angelidaki 2009; Ibrahim et al. 2016; Mearns et al. 2020; Yazdan et al. 2020).

Though it's possible to completely clean out the oil from the water, this is made more difficult by oil–water emulsions, which are more stable because of various components in the oil or the water that act as emulsion binders such as asphalting and resin, as well as clay particles, mineral salts and so on (Victorovna 2001). To address this issue, a variety of ways have been developed to break down oil–water emulsions: biological and chemical as well as mechanical (settling tanks, cyclones, centrifuges, and separators), thermal, and electrical, microwave, ultrasonic, and membrane separation techniques (Padaki et al. 2015). To separate oil droplets smaller than 10 m, membrane filtration is a promising mechanism (Tanudjaja et al. 2019). As a result, ultrafiltration (UF) and tighter microfiltration (MF) are the better options for separating oil droplets in the 1–10 μm size range from water (Ghadhban et al. 2020; Lee & Patel 2020; Yahya et al. 2021).

Because of ongoing research and development in both academia and the private sector, the membrane technology market has experienced probably much higher growth. It is also becoming increasingly popular as a separation and purification technique because of the advantages of membrane technology, including its low energy consumption, high efficiency, simplicity of continuous operation, and little environmental impact (Lee & Darling 2016). Wastewater treatment, desalination, food processing, chemicals, and pharmaceuticals have all used membrane separation technology effectively for several decades, showing both its technical and economic virtues (Fane et al. 2015; Abbas et al. 2022).

Polymer membranes are semi-permeable polymer filter media being used pressure-driven treated water. Polyvinylidene fluoride, polysulfone, polycarbonate, polyethersulfone, cellulose acetate, and polyamide are all examples of polymeric materials that can be used in the manufacturing of plastic products. Additionally, in polymeric membranes, the pore size of the membrane can be easily controlled during the manufacturing of the membrane. The installation necessitates a high degree of flexibility and a smaller area (Alsalhy et al. 2018). The membrane separation industry prefers polymeric membranes because of their low cost and wide range of potential uses. Polymer membranes, which are also known as organic membranes, are commonly referred to as such. Polymer membranes are part of a larger family of membranes. Polymer membranes can be replaced by ceramic membranes, which are also called inorganic membranes (Chen et al. 2016; Zhu et al. 2016; Chen et al. 2019; Zhong et al. 2021a).

Enhancing the sustainability of membrane production is an important goal for the field of membrane technology. Despite the many potential uses for membrane technology, our focus was on polymeric membranes and their effect on solvents over the long term. Numerous of the research included in this research concentrated on identifying greener alternatives. The term ‘green’ membrane encompasses two distinct but related concepts. However, the use of renewable resources in place of oil-derived plastics is a good option. On the other side, other chemicals like modifiers, solvents, and additives used in the membrane manufacturing process should present the least degree of hazard as feasible and should be sourced from renewable sources, non-toxic to the environment, and reusable from waste (Capello et al. 2007; Figoli et al. 2014; Hadi et al. 2020).

However, the manufacturing of the membrane itself should not include the use of hazardous chemicals. The benefits of a greener and environmental preparation method are immeasurable; therefore, an excellent toxicity profile and specific physical properties, like solubility in water, a low molecular weight, and a high boiling point make this alternative to hazardous solvents the best solution for replacing them without affecting membrane performance (Al-Ani et al. 2019; Kadhim et al. 2020).

Previous reviews highlighted a general topic on membrane synthesis, preparation, and modification, as they looked at membrane formation, installation techniques, fouling membranes, or manufacturing procedures (Jiang et al. 2021; Mamah et al. 2021; Shi et al. 2021; Singh et al. 2021). Without the specialization and focus in studying of the green membranes and their positive influence on the environment on the one hand, and the possibility of their recycling and the economic value of preparation and applications on the other hand (Wang et al. 2017; Xiong et al. 2019; Bandehali et al. 2021). The aim of this review is to illustrate researchers' and scientists' efforts to develop and apply greener synthesizing pathways, as well as chemical processes which progressively have been more sustainable and greener in order to avoid ecological impacts. In addition, give some suggestions, prior strategies, and future studies of prospects for achieving significant enhancements in membrane development. There is also research on the use of membranes in wastewater treatment and oil–water emulsion separation and a variety of membrane-modification techniques are investigated.

Membranes are thin layers of substance used to selectively separate fluid from other components. They could be synthetic, organic or inorganic. Membrane treatment is a technique of cleaning oily wastewater that physically separates contaminants from the water and uses a porous material (Wei et al. 2018; Adetunji & Olaniran 2021). Super wetting separation membranes are used to separate stable oil–water emulsions using the two separation mechanisms described in Figure 2. Firstly, size sieving mechanism. The separating membrane can be adjusted so that its pores are equal to or smaller than the emulsion particle size. Separation membranes may successfully separate the stable oil-in-water emulsions; however, this will lead to a significant decrease in the membrane's flow, making it difficult to industrialize. Secondly, the demulsification mechanism: emulsion droplets will be gathered together to produce an unstable oil–water mixture when they come into contact with the separation membrane's wettability, allowing for selective separation of the oil and water. To increase separation performance, this method does not lower the membrane's pore size; hence it does not sacrifice flux. As a result, a variety of emulsions and membrane separation processes can be used to create the ideal super-wetting separation membrane, and the highest separation performance can be achieved while consuming the least amount of energy (Gebreslase 2018; Wang et al. 2018; Cai et al. 2021).
Figure 2

Oil–water emulsion separation mechanism separation (Cai et al. 2021).

Figure 2

Oil–water emulsion separation mechanism separation (Cai et al. 2021).

Close modal

Synthesis of a green biodegradable membrane for use in a variety of separation processes is an eco-friendly approach that shows a new method of thinking in chemistry that aims to get rid of toxic waste, decrease energy consumption, and make use of environmental solvents. Effective separations of emulsions are a growing issue due to the increasing amount of oily wastewater and the oil spills caused by the sinking of oil tankers, industrial accidents and other ships. Many studies in recent years have concentrated on creating various membranes to improve the mechanical separation of emulsions. Several polymers were used to prepare membranes for o/w separation. In response to the growing demand for sustainable and cost-effective membrane production methods, many studies have focused on creating and synthesizing a membrane from green basic material (Figoli et al. 2014). As a consequence, bioplastics, such as bio-based and petroleum-based biodegradable polymers, gained a lot of interest in recent years (Hamad et al. 2014). Bio-based and petroleum-based polymers refer to bioplastics derived from both biological and fossil sources. There are two types of biopolymers: those that degrade and those that don't degrade. Biodegradable bioplastics are those that can be broken down by microorganisms in the natural environment. Polymers that degrade in the environment come in three varieties: plants, animals, and synthetically created. Polylactic acid (PLA), poly (lactide-co-glycolide) (PLGA), cellulose acetate (CA), polyhydroxyalkanoates (PHAs), collagen and sericin, chitosan/chitin (CS/CT), poly (vinyl alcohol) (PVA), lignin, alginate (Alg), starch, poly (butylene succinate) (PBS), poly (propylene fumarate) (PPF), poly (ε-caprolactone) (PCL), and other infrequently utilized polymeric materials polymers that degrade in the environment. PHAs, PLA, PLGA, lignin, starch, Alg, and CA acetate are all polymers derived from plants or vegetables. Collagen and sericin are both derived from animals. Chitosan/chitin may be acquired from both plant and animal sources. PBS, PPF, and PCL are synthetic biodegradable polymers. Table 1 provides some advantages and disadvantages of the investigated green material with other options. It has been shown that the use of these substances is increasing at a rate of roughly 10% to 20% every year (Kumar & Maiti 2016; Chang et al. 2021). Since their first use in the packaging sector, the uses of biodegradable polymers have been expanded to include a variety of industries, including membrane separation technologies (Safi et al. 2020; Rashid et al. 2022). In nature, polymers can be either biodegradable or not; this implies that several natural polymers might not have been biodegradable. It is critical that plastic supply be renewable, both environmentally and economically, as well as that its disposal in the natural environment be done without concern or made of recycled (Credou & Berthelot 2014; Lee et al. 2021). Lastly, a great number of used membranes ought to be recycled and reused again. This review therefore investigates the membrane industry's transformation requirements in the context of recycling and reuse.

Table 1

Some advantages and disadvantages of the investigated green material with other options

Polymer TypeAdvantageDisadvantageRef.
PLA Biodegradable, biocompatibility, eco-friendly material, good physical and mechanical properties, safe, non-toxic Hydrophobicity Zaaba & Jaafar (2020); Amini et al. (2021)  
CS Biodegradable, biocompatibility, good solubility, bioactivity, non-toxic Low mechanical, may contract. Nunes et al. (2021)  
CA Biodegradable, easy processing, raw material from renewable resource, non-toxic Low chemical resistances, low mechanical strength Zaaba & Jaafar (2020); Kamal et al. 2014)  
PEG Biocompatibility, stable dissolution, good substrate for restore physiological functions Hydrophilicity Amini et al. (2021)  
PSf High mechanical properties, high chemical, and thermal stability Hydrophobic Ali et al. (2014); Dmitrieva et al. (2022)  
PVDF Good chemical, mechanical, thermal stability Hydrophobicity Dmitrieva et al. (2022); Dumitrescu et al. (2020)  
Polymer TypeAdvantageDisadvantageRef.
PLA Biodegradable, biocompatibility, eco-friendly material, good physical and mechanical properties, safe, non-toxic Hydrophobicity Zaaba & Jaafar (2020); Amini et al. (2021)  
CS Biodegradable, biocompatibility, good solubility, bioactivity, non-toxic Low mechanical, may contract. Nunes et al. (2021)  
CA Biodegradable, easy processing, raw material from renewable resource, non-toxic Low chemical resistances, low mechanical strength Zaaba & Jaafar (2020); Kamal et al. 2014)  
PEG Biocompatibility, stable dissolution, good substrate for restore physiological functions Hydrophilicity Amini et al. (2021)  
PSf High mechanical properties, high chemical, and thermal stability Hydrophobic Ali et al. (2014); Dmitrieva et al. (2022)  
PVDF Good chemical, mechanical, thermal stability Hydrophobicity Dmitrieva et al. (2022); Dumitrescu et al. (2020)  

Poly lactic acid (PLA)

PLA is a biodegradable polymer generated from renewable sources such as sugarcane, corn, and cellulose. It has biodegradable thermoplastic with good biocompatibility and absorbability. PLA has been used mostly in clinical uses such as implant devices, tissues scaffold, and internal sutures up until the last decade due to its high cost, scarce availability, and restricted molecular weight (Galiano et al. 2019). New methods for producing high-molecular-weight PLA polymers at a lower cost have emerged, expanding the material's potential applications (Huang et al. 2016). As a biodegradable and renewable resource, PLA has been proposed as a reasonable solution to society's mounting solid waste disposal issues (Ummartyotin & Pechyen 2016). PLA is a member of a class of aliphatic polyesters that are generated from hydroxy acids. Lactic acid (2-hydroxy propionic acid), a PLA building block, can be found in both optically activated- and l-enantiomers. PLA with varying material qualities can be made based on the number of enantiomers. This enables the manufacture of a broad range of PLA polymers to meet a variety of performance needs. In comparison to existing petroleum-based polymers, PLA possesses reasonable physical, optical, barrier and mechanical properties (Naffakh et al. 2014).

A variety of adjustments are required when manufacturing membranes to separate water–oil emulsions because of the PLA polymer's hydrophobicity and contaminating tendency. The phase separation method is one of the most popular types of modification. Zeng et al. (2020) pointed to a simple method for producing superhydrophobic and magnetic fabric using degradable PLA nonwoven as a substrate. It was based on the use of in situ formation Fe3O4 particles immobilized by the polymerized PDA layer to create roughness and the coated PVDF-HFP layer that provided low surface energy. Figure 3 shows a diagram of the SMPLA nonwoven fabric manufacturing process. WCA of 151.7° demonstrated outstanding hydrophobicity, and the fabric was resistant to alkalis, acids, organic solvents, and boiling water in addition to abrasion and had a good self-cleaning capability. Furthermore, organic solvents absorbed up to 36 times the weight of the fabric, and the oil–water separation efficiency approached 99.5%. As a result of this, the fabric was able to be driven by a magnet to separate the oil floating in a specific position on the water's surface. It also demonstrated good separation efficiency and exceptional reusability for the continuous separation of oil-water mixtures using the fabric (Zeng et al. 2020).
Figure 3

SMPLA nonwoven fabric manufacture process (Zeng et al. 2020).

Figure 3

SMPLA nonwoven fabric manufacture process (Zeng et al. 2020).

Close modal
Devised a simple method for producing low-cost, super-wetting PLA non-woven fabrics that are effective in separating oil and water mixes from one another as shown in Figure 4 (Shi et al. 2018). Intriguingly, the relative amount of chemical components can be used to alter the wettability of fabrics. Non-woven PLA fabrics with high absorption capacity and high selectivity can be used as absorbent materials and oil/water separation materials, respectively, because of their super wetting properties. They may be able to provide solutions for complex oily water treatment because of their high absorption capacity and selectivity, photodegradation property, and biodegradability.
Figure 4

Low-cost super-wetting PLA non-woven fabrics (Shi et al. 2018).

Figure 4

Low-cost super-wetting PLA non-woven fabrics (Shi et al. 2018).

Close modal
For the production of biodegradable super-hydrophobic PLA non-woven fabric for a gravity-driven oil–water separation, a hierarchical approach to micro/nanoparticles assisted fabrication was improved by Gu et al. (2017). After extensive friction and stretching tests, the as-prepared SiO2/PS/PLA non-woven fabric retains its super hydrophobicity. In addition, as demonstrated in Figure 5, it effectively separates oil and water mixes, making it an excellent choice for oil-polluted water treatment (Gu et al. 2017).
Figure 5

(a) N-hexane and (b) tetrachloromethane removal images (c) Absorption capacity (d) The recycled absorption (Gu et al. 2017).

Figure 5

(a) N-hexane and (b) tetrachloromethane removal images (c) Absorption capacity (d) The recycled absorption (Gu et al. 2017).

Close modal
Lu et al. (2022) used PLA to physically blend with PHB, PPC, and PBS biopolymers to create two biopolymer membranes that were successfully synthesized. One of the membranes is supplemented with hydrophilic nano-silica to study the effect of hydrophobicity change on the membrane and separation performance. High porosity membranes with homogeneous surfaces were made possible by the addition of silicon dioxide (silica). In addition, the silica-containing membrane's thermal and mechanical properties have been improved. The synthetic membranes' oil and grease separation performance was tested, and the findings showed that they can separate up to 98.6% of the oil and grease. An experimental membrane module, seen in Figure 6, was built to test the synthesized membranes' separation performance (Ghorbani et al. 2021).
Figure 6

System for emulsion separation experiment (Ghorbani et al. 2021).

Figure 6

System for emulsion separation experiment (Ghorbani et al. 2021).

Close modal
Another method of fabrication is electrospinning and surface modification. This approach is presented by Zhou et al. (2019a), where an effective hierarchical roughness structure was created using PLA nanofibers coated with titanium dioxide (TiO2) and methyltrichlorosilane. At various pH levels, the nanofiber membrane maintained its super hydrophobicity and extremely low water-adhesion properties as-synthesized (θ water = 157.4 ± 0.9°). High permeation fluxes (2,297.6 ± 51.6 L•m−2•h−1) for various oils, as well as good separation performance (separation efficiency of more than 95%) attributable to the ultra-high porosity electrostatic spinning nanofiber membranes and the ultra-hydrophobicity of the top, were observed in the membrane. PLA@TiO2@MTS nanofibrous films in oil–water separation are examined in Figure 7 (Zhou et al. 2019a).
Figure 7

(a) PLA@TiO2@MTS nan fibrous film for oil/water separation, (b) permeability flux and (c) oil–water admixture separation results (Zhou et al. 2019a).

Figure 7

(a) PLA@TiO2@MTS nan fibrous film for oil/water separation, (b) permeability flux and (c) oil–water admixture separation results (Zhou et al. 2019a).

Close modal
PLA/WO3/N-CQDs fibers were also modified utilizing a similar method by Nugraha et al. (2021). To achieve superoleophilic properties, they added WO3/N-CQDs to PLA to modify its wettability and surface structure, which increased hydrophobicity. EDA fibers made with PLA/WO3/N-CQDs have contact angles up to 132.37°, while the pure PLA fiber only has contact angles of 113.7°. When fibers are manufactured, water contact angle (WCA) measurements are shown in Figure 8. A total of nearly 87% of the fiber's absorption capacity, as well as separating and decolorizing oil from water, were improved compared to pure PLA fiber. After 10 reuses, the PLA/WO3/N-CQDs EDA fiber maintains its separation performance. PLA/WO3/N-CQDs fibers could offer an answer to the problem of treating oily wastewater (Nugraha et al. 2021).
Figure 8

(a) Droplets of water and n-hexane on the membrane's surface (b) membrane (WCA) (Nugraha et al. 2021).

Figure 8

(a) Droplets of water and n-hexane on the membrane's surface (b) membrane (WCA) (Nugraha et al. 2021).

Close modal
Liu et al. (2019a) successfully constructed a very porous membrane that is activated by humidity. When the relative humidity is 80%, the poly (lactic acid) fiber membrane has superhydrophobicity as a result of air being trapped by the enhanced roughness of the fiber. In the meantime, a rise in humidity promotes an increase in membrane porosity from 81% to 92% when the humidity is raised from 40% to 80%. At varied RHs, the shape of porous PLA fibers, as depicted in Figure 9, shows two significant changes as humidity increases: (1) The fiber diameter increases from 0.73 ± 0.08 μm to 1.78 ± 0.16 μm, and (2) the surface roughness increases, indicating that the higher the humidity, the larger the pore size on the fiber surface. Superhydrophobicity and higher membrane porosity result in a functional poly (lactic acid) membrane having better oil–water separation efficiency (Liu et al. 2019a).
Figure 9

The microstructure of PLA fibers with varying relative humidity (Liu et al. 2019a).

Figure 9

The microstructure of PLA fibers with varying relative humidity (Liu et al. 2019a).

Close modal

A biodegradable PLA-based hierarchical functionalized electrospun nanofibrous membrane was successfully fabricated. Nanoscale Ag-NPs on the PLA nanofibers were used to create the hierarchical rough structure by adhering them to the PDA layer by (Liu & Yuan 2018). Fluorinated thiols were then added to the surface to create the super hydrophobic/superoleophilic properties. The super hydrophobicity (θ water = 158.6°) of the produced nanofibrous membrane was found to be stable in a variety of solutions, including alkali, salt, and acid. As a result, the membranes were shown to have a high penetration flux (2,664 Lm−2h−1) for a wide range of oils and an acceptable separation performance (more than 95%) separation efficiency for both various oil–water solutions and surfactant stabilized water–oil emulsions). This nanofiber's hydrophobicity (θ water = 142.3°) and hierarchical rough structure were able to hold up after 20 times of repeated use due to the durability of the Ag NPs fixed on the nanofibers and show better recyclability.

Li et al. (2022) prepare a membrane made of Nano-PLA nonwoven materials coated with PLA nanoparticles. It is possible to achieve a good compromise between PLA nanoparticle adherence and nonwoven material flexibility by varying the dosage and curing period of adhesive ER. When used to separate oil from water or to absorb oil, the nano-PLA membranes demonstrate outstanding selectivity. Furthermore, the mechanical strength is more than two times that of pure PLA nonwoven membranes, while flexibility is retained. Furthermore, the nano-PLA nonwoven fabric has an extremely small pore size of around 100 μm, which is half the size of the pure sample. Because of its super-hydrophobic surface and smaller pores, as shown in Figure 10, the nano-PLA membrane is an excellent oil–water separator. Such super-hydrophobic membranes made of nano-PLA with high mechanical qualities are a viable solution for preventing second pollution from oil-water separation components (Lu et al. 2022).
Figure 10

Oil–water separation using a Nano-PLA membrane (Lu et al. 2022).

Figure 10

Oil–water separation using a Nano-PLA membrane (Lu et al. 2022).

Close modal

Table 2 summarizes the evolution of modern PLA membrane types, where a good rejection rate of more than 90% can be achieved due to an improved membrane structure. Such as improving contact angle, porosity, and pore size, this is done by improving the membrane characteristics by adding the appropriate additives to the polymer casting solution through the membrane preparation.

Table 2

Separation of oil/water via PLA membranes

MembraneOilsAdditives/component UsedPerformance/efficiencyPore sizePorosityContact angleRef.
PLA nonwoven filter soybean oil, N-hexane, styrene, diesel oil, N-heptane, silicone oil chloroform ethanol more than 95% 10–100 μm high WCA 151° Fan et al. (2020)  
SMPLA nonwoven fabric n-hexane, toluene, carbon tetrachloride, cyclohexane, ethanol, and diethyl ether DPA PVDF-HFP  up to 99.5% 6.78–9.91%  WCA 151.7° Zeng et al. (2020)  
PLA foam different oils and organic solvents dioxane  98% >90% WCA 151° Wang et al. (2019)  
PLA filtration films petroleum ether, gasoline, diesel oil, and vegetable oil NaCl more than 97% 500 nm–10 μm  WCA 153.5 ± 1.7° Xue et al. (2013)  
PLA@TiO2@MTS nanofibrous membrane soybean oil, toluene, carbon tetrachloride, petroleum ether and n-hexane TiO2 MTS more than 95% WCA 157.4 ± 0.9° Zhou et al. (2019a)  
Nano-PLA nonwoven fabric castor oil, petroleum ether, n-hexane, silicone oil, lubricating oil ER KH-560 96% 100 μm WCA 152.1° Lu et al. (2022)  
ZIF-8@PLA composite aerogel cyclohexane, petroleum ether, vegetable oils, n-heptane, CCl4 ZIF-8 close to 100% 10–30 nm WCA 145° Li et al. (2021a)  
PLA/WO3/N-CQDs fiber hexadecane n-hexane, and n-heptane WO3/N-CQDs 91.80% 1.848 ± 0.328 μm WCA 132.37° Nugraha et al. (2021)  
PLA/PPC PLA/PHB PLA/PBS PLA/TEC oil and grease PBS, PPC, PHB, SNPs more than 98% 18.3–28.55 nm good Ghorbani et al. (2021)  
PLLA films petroleum ether chloroform 99.1% 69.5–87.5% WCA 152.1° Sun et al. (2021)  
PLA/PBE micro-nanofiber fabrics soybean oil PBE excellent WCA 134° Li et al. (2022)  
PLLA/SiO2 nanocomposite membrane oil (red) SiO2 effective WCA 167.1° Zhong et al. (2021b)  
Modified PLLA nonwoven fabric hexane, toluene, and tetrachloromethane PDLA more than 97% WCA 130.8 ± 1.5° Zhu et al. (2020)  
PLA fiber membrane n-hexane, olive oil, and lubricant oil chloroform N, N dimethylformamide more than 99.98% 500 nm–1 μm 92 ± 4.1% WCA 150.3° Liu et al. (2019a)  
Janus PLA fibrous membrane carbon tetrachloride, n-hexane, and petroleum ether SiO2 CNTs more than 99% WCA is more than 142° Qin et al. (2020)  
PLA/γ-Fe2O3 composite membranes motor oil, silicone oil, castor oil, corn oil, lubricating oil, sunflower oil, n-hexane, olives oil, cedar oil γ-Fe2O3 high separation >90% WCA 148° Zhang et al. (2019)  
PLA packing n-hexane PS 95% 4–200 μm WCA 150° Xing et al. (2019)  
PLA porous membrane n-hexane PS 99.4% ∼25 μm WCA 151.7° Xing et al. (2018)  
Advanced PLA non-woven fabric n-hexane and tetrachloromethane TiO2 86.9% WCA 150° Shi et al. (2018)  
Nanofibrous PLA membrane toluene PDA 98.4 ± 1.0% high WCA 158.6° ± 1.2° Liu & Yuan (2018)  
SiO2/PS/PLA non-woven fabric hexane, soybean oil, toluene, pump oil, tetrachloromethane, and vegetable oil SiO2 PS efficient WCA 152.0 ± 2.1° Gu et al. (2017)  
MembraneOilsAdditives/component UsedPerformance/efficiencyPore sizePorosityContact angleRef.
PLA nonwoven filter soybean oil, N-hexane, styrene, diesel oil, N-heptane, silicone oil chloroform ethanol more than 95% 10–100 μm high WCA 151° Fan et al. (2020)  
SMPLA nonwoven fabric n-hexane, toluene, carbon tetrachloride, cyclohexane, ethanol, and diethyl ether DPA PVDF-HFP  up to 99.5% 6.78–9.91%  WCA 151.7° Zeng et al. (2020)  
PLA foam different oils and organic solvents dioxane  98% >90% WCA 151° Wang et al. (2019)  
PLA filtration films petroleum ether, gasoline, diesel oil, and vegetable oil NaCl more than 97% 500 nm–10 μm  WCA 153.5 ± 1.7° Xue et al. (2013)  
PLA@TiO2@MTS nanofibrous membrane soybean oil, toluene, carbon tetrachloride, petroleum ether and n-hexane TiO2 MTS more than 95% WCA 157.4 ± 0.9° Zhou et al. (2019a)  
Nano-PLA nonwoven fabric castor oil, petroleum ether, n-hexane, silicone oil, lubricating oil ER KH-560 96% 100 μm WCA 152.1° Lu et al. (2022)  
ZIF-8@PLA composite aerogel cyclohexane, petroleum ether, vegetable oils, n-heptane, CCl4 ZIF-8 close to 100% 10–30 nm WCA 145° Li et al. (2021a)  
PLA/WO3/N-CQDs fiber hexadecane n-hexane, and n-heptane WO3/N-CQDs 91.80% 1.848 ± 0.328 μm WCA 132.37° Nugraha et al. (2021)  
PLA/PPC PLA/PHB PLA/PBS PLA/TEC oil and grease PBS, PPC, PHB, SNPs more than 98% 18.3–28.55 nm good Ghorbani et al. (2021)  
PLLA films petroleum ether chloroform 99.1% 69.5–87.5% WCA 152.1° Sun et al. (2021)  
PLA/PBE micro-nanofiber fabrics soybean oil PBE excellent WCA 134° Li et al. (2022)  
PLLA/SiO2 nanocomposite membrane oil (red) SiO2 effective WCA 167.1° Zhong et al. (2021b)  
Modified PLLA nonwoven fabric hexane, toluene, and tetrachloromethane PDLA more than 97% WCA 130.8 ± 1.5° Zhu et al. (2020)  
PLA fiber membrane n-hexane, olive oil, and lubricant oil chloroform N, N dimethylformamide more than 99.98% 500 nm–1 μm 92 ± 4.1% WCA 150.3° Liu et al. (2019a)  
Janus PLA fibrous membrane carbon tetrachloride, n-hexane, and petroleum ether SiO2 CNTs more than 99% WCA is more than 142° Qin et al. (2020)  
PLA/γ-Fe2O3 composite membranes motor oil, silicone oil, castor oil, corn oil, lubricating oil, sunflower oil, n-hexane, olives oil, cedar oil γ-Fe2O3 high separation >90% WCA 148° Zhang et al. (2019)  
PLA packing n-hexane PS 95% 4–200 μm WCA 150° Xing et al. (2019)  
PLA porous membrane n-hexane PS 99.4% ∼25 μm WCA 151.7° Xing et al. (2018)  
Advanced PLA non-woven fabric n-hexane and tetrachloromethane TiO2 86.9% WCA 150° Shi et al. (2018)  
Nanofibrous PLA membrane toluene PDA 98.4 ± 1.0% high WCA 158.6° ± 1.2° Liu & Yuan (2018)  
SiO2/PS/PLA non-woven fabric hexane, soybean oil, toluene, pump oil, tetrachloromethane, and vegetable oil SiO2 PS efficient WCA 152.0 ± 2.1° Gu et al. (2017)  

Chitosan (CS)

As the second most prevalent biopolymer in nature, chitosan (CS) can be observed in shells of crustaceans and insect pests, molluscan organs, and fungal structures. In most cases, it's produced by chitin deacetylation (CT) (Anitha et al. 2014; Antony et al. 2019; Liu et al. 2019b). Chitosan is a biopolymer with strong hydrophilicity and antibacterial characteristics that is affordable and harmless. (Abu-Saied et al. 2017). Co-polymerization of β (1, 4)-linked 2-amino-deoxy-D-glucopyranose and N acetylglucosamine results in its chemical structure. The hydroxyl and amino groups (which provide electrons) are both present. Despite this, it is soluble in dilute organic acids such as formic, acetic, and lactic acids and insoluble in a variety of organic solvents, water, and alkalis. With only a modest amount of acid, chitosan can achieve high levels of water solubility because of the presence of the acid-soluble polar ether (COC), hydroxyl (OH), and amino (NH2) groups (Ma & Sahai 2013; Cao et al. 2018). Because of the availability of amino groups and hydroxyl groups, CS-based materials have been extensively explored for decontamination of minerals from effluents, and they are widely employed in the pharmaceutical, chemical, and paper industries, and protection of the environment sectors. Many chemical alterations have been made to chitosan in order to increase its adsorption capacity (Losev et al. 2017; Jiang et al. 2018; Behr & Ganesan 2022).

Zhu et al. (2021) utilized a vacuum filtration method to fix the modified UiO-66-NH2 on the mixed cellulose membrane (MCE), which was then cross-linked with chitosan (CS). This resulted in a novel kind of membrane. The membrane separated various oil–water emulsions effectively, exhibiting extremely good hydrophilicity in the air and great super-oleophobic performance underwater. MCE's filtering flux was only 1/10th of that of the modified membrane, which allowed for separation efficiency of over 95% in the case of the petroleum-ether-water-emulsion. This MCE exhibited a flow of 500 L m−2 h−1 after 10 cycles of the modified membrane. Figure 11 shows the mechanism chart of the UiO/CS composite membrane used to separate oil from water. Furthermore, even when exposed to highly acidic, highly basic, and salty solutions, the membrane retained its underwater superoleophobicity (Zhu et al. 2021).
Figure 11

Mechanism of oil–water separation via the UiO/CS composite membrane (Zhu et al. 2021).

Figure 11

Mechanism of oil–water separation via the UiO/CS composite membrane (Zhu et al. 2021).

Close modal
Du et al. (2017) fabricated a composite membrane for emulsified oil separation by applying the vacuum-assisted technology of CS and titanium dioxide (TiO2) construction on a cellophane membrane, which is super-hydrophilic and superoleophobic (Du et al. 2017). Nanoscale hierarchical structure and hydrophilic chitosan–TiO2 (CST) composite are effective for creating a water layer that repels oil droplets from entering the membrane. For hexadecane/water emulsion, the modified membrane displayed outstanding flow up to 6,002.5 L m2 h1, which is a magnitude greater than typical filtration membranes. For all emulsified oils, the removal efficiency is above 97%, which indicates excellent oil–water separation. Hexadecane/water emulsion, membrane flow and oil rejection coefficient for original and modified membranes are presented in Figure 12. Even in corrosive aquatic conditions, such as very acidic, strongly alkaline, and highly salty solutions, the modified membrane can sustain underwater superoleophobicity. The chitosan–TiO2 composite membrane is projected to be effective in the treatment of oily wastes from both industry and daily life.
Figure 12

Original and modified membranes efficiencies in flux and separation (Du et al. 2017).

Figure 12

Original and modified membranes efficiencies in flux and separation (Du et al. 2017).

Close modal
Ponnanikajamideen et al. (2021) focused on emulsified oils that can be separated utilizing super-hydrophilic and superoleophobic cellulose membranes. Membrane fabrication was carried out using a vacuum-assisted filtration process with GO and CS as raw materials (Ponnanikajamideen et al. 2021). In a vacuum-driven oil–water separation process, the GO/CS membrane was separated from water at a pressure of 0.09 MPa utilizing various surfactant-stabilized oil and water emulsions (Figure 13(a) and 13(b)) (Ponnanikajamideen et al. 2021). In contrast, when the surfactant was added, the oil droplet size was greatly reduced, and the usual size of the droplet was roughly 200 nm (Figure 13(c)). It was revealed that the GO/CS membrane is extremely effective at separating oil-in-water emulsions, as no droplets were found in the water collected after the separation process (Figure 13(d)). More than 95% of the emulsified oils at a 1:4 concentrations were successfully separated, demonstrating the superiority of the oil and water separation process. A composite membrane made of graphene and chitosan was discovered to be capable of removing oils from wastewater (Ponnanikajamideen et al. 2021).
Figure 13

(a) Soybean–water emulsion separation, (b) the emulsified before and after it is separated (c) and (d) optical microscope photos of soybean emulsions in water (Ponnanikajamideen et al. 2021).

Figure 13

(a) Soybean–water emulsion separation, (b) the emulsified before and after it is separated (c) and (d) optical microscope photos of soybean emulsions in water (Ponnanikajamideen et al. 2021).

Close modal

Below we will highlight the different types of chitosan membrane fabrication methods used. Some typical examples of chitosan membranes for water–oil separation applications are summarized in Table 3. With a detailed illustration of the prepared membrane characteristics and the membrane performance.

Table 3

Separation of oil/water via membranes made of chitosan

MembraneOilsAdditives/ component usedPerformance/efficiencyPore sizePorosityContact angleRef.
MCS-MCA-TiO2 membrane cyclohexane TiO2 99.4% WCA 13.7° OCA 157.24° Yu et al. (2019)  
CS@PCL membranes hexane and heptane PCL more than 99.9% 42 nm WCA, OCA in the air at 0° Doan et al. (2021)  
CS/ALG Nanofiber-coated Meshes toluene, n-hexane, chloroform, kerosene and crude oil ALG 99% 268 nm OCA over 160° Zhou et al. (2019b)  
UiO-66-NH2/CS/mixed cellulose dichloromethane, petroleum ether, dodecane and gasoline UiO-66-NH2 more than 95%. 220 nm high OCA 150° Zhu et al. (2021)  
Catechol/Chitosan co-deposited membranes n-hexadecane, peanut oil, and crude oil catechol higher removal efficiencies WCA 138° Zhao et al. (2021)  
Modified Chitosan–Gelatin membrane cooking oil, light crude oil, and used engine oil gelatin more than 98% 100–200 μm high WCA 0° Zakuwan et al. (2021)  
CTS-PPS microfiber membranes n-hexane, petroleum ether, and toluene GA more than 99% 1.38–3.52 μm 50.3–82.4% OCA 151.89° Huang et al. (2019)  
SiO2/CT-PVDF Membrane gasoline SiO2  99% 41–53% WCA 68.62° Ardeshiri et al. (2019)  
CST and CS modified membranes hexadecane, octane, petroleum ether, toluene TiO2 more than 97%, 220 nm OCA 165.7 ± 5.0° Du et al. (2017)  
GO/CS Membrane soybean, silicone, and octane GO more than 95% WCA and OCA 0° Ponnanikajamideen et al. (2021)  
CS/TiO2 modified nitrocellulose membrane sixteen alkanes, petroleum ether, and diesel TiO2 98.5% OCA 156.2 ± 3.3° Li et al. (2021b)  
r-PET@ Chitosan. membranes kerosene, hexane, CTC, and TCE  r-PET more than 95% OCA 168.0 ± 1.9° WCA 168.1 ± 2.5° Baggio et al. (2021)  
PEG-Chi Hybrid-Coated vegetable oil PEG 98% increased McCloskey et al. (2010)  
MembraneOilsAdditives/ component usedPerformance/efficiencyPore sizePorosityContact angleRef.
MCS-MCA-TiO2 membrane cyclohexane TiO2 99.4% WCA 13.7° OCA 157.24° Yu et al. (2019)  
CS@PCL membranes hexane and heptane PCL more than 99.9% 42 nm WCA, OCA in the air at 0° Doan et al. (2021)  
CS/ALG Nanofiber-coated Meshes toluene, n-hexane, chloroform, kerosene and crude oil ALG 99% 268 nm OCA over 160° Zhou et al. (2019b)  
UiO-66-NH2/CS/mixed cellulose dichloromethane, petroleum ether, dodecane and gasoline UiO-66-NH2 more than 95%. 220 nm high OCA 150° Zhu et al. (2021)  
Catechol/Chitosan co-deposited membranes n-hexadecane, peanut oil, and crude oil catechol higher removal efficiencies WCA 138° Zhao et al. (2021)  
Modified Chitosan–Gelatin membrane cooking oil, light crude oil, and used engine oil gelatin more than 98% 100–200 μm high WCA 0° Zakuwan et al. (2021)  
CTS-PPS microfiber membranes n-hexane, petroleum ether, and toluene GA more than 99% 1.38–3.52 μm 50.3–82.4% OCA 151.89° Huang et al. (2019)  
SiO2/CT-PVDF Membrane gasoline SiO2  99% 41–53% WCA 68.62° Ardeshiri et al. (2019)  
CST and CS modified membranes hexadecane, octane, petroleum ether, toluene TiO2 more than 97%, 220 nm OCA 165.7 ± 5.0° Du et al. (2017)  
GO/CS Membrane soybean, silicone, and octane GO more than 95% WCA and OCA 0° Ponnanikajamideen et al. (2021)  
CS/TiO2 modified nitrocellulose membrane sixteen alkanes, petroleum ether, and diesel TiO2 98.5% OCA 156.2 ± 3.3° Li et al. (2021b)  
r-PET@ Chitosan. membranes kerosene, hexane, CTC, and TCE  r-PET more than 95% OCA 168.0 ± 1.9° WCA 168.1 ± 2.5° Baggio et al. (2021)  
PEG-Chi Hybrid-Coated vegetable oil PEG 98% increased McCloskey et al. (2010)  

Cellulose acetate (CA)

CA is a polymer that is often used in membrane production and has been the subject of much research. CA can be used to create membranes for microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO), and it is typically employed in dialysis applications (Sivakumar et al. 2006; Iwata 2015; Kargarzadeh et al. 2018). CA is biodegradable and sustainable because it is made from cellulose, a naturally occurring substance. Because of its insolubility, cellulose must be treated with acetic anhydride and acetic acid to produce CA (Gopinath et al. 2018). However, it has many disadvantages, including low mechanical strength, thermal resistance, and chemical resistance. As a result, the addition of additives or surface modifications is frequently required to enhance the properties of CA membranes (Alcheikhhamdon & Hoorfar 2017; Mohamed et al. 2017).

What's more, for different purposes, cellulose-based materials (such as filter paper and membranes) can also be chemically changed. Hydrophobic nanoparticles can be applied to filter paper by spin-coating, dipping, or spraying the paper with a solution, emulsion, or suspension (Li et al. 2008; Wang et al. 2008; Huang et al. 2012; Yetisen et al. 2013).

Gao et al. (2021) prepared a new HP-PVDF membrane by adhering regenerated cellulose to a PVDF membrane utilizing supramolecular adhesives, tannic acid, and polyvinyl alcohol (TA-PVA) complex. This membrane has excellent micro-nano-scale porosity, good durability, and super hydrophilicity as shown in Figure 14 (Gao et al. 2021). Simple, easy, non-toxic, and relatively inexpensive were just some of the advantages of the process of preparation. The RC layer's pore size on the surface of cellulose-TA-PVA-PVDF was favorable to demulsification, and the TA-PVA complex's high adhesiveness helped the cellulose TA-PVA-PVDF membrane last longer. Oil and water separation was made easier and more efficient with the newly designed cellulose-TA-PVA-PVDF membrane (99.99%) and an impressive (318 L m−2 h−1 bar-1) but also 99.7% separation efficiency after 30 cycles and 30 min of ultrasonography. What's more, actual oil and seawater were successfully separated using the cellulose TA-PVA-PVDF formulation. Thus, the cellulose-TA-PVA-PVDF membrane offered a lot of potential for practical oil-water separation applications.
Figure 14

Process of making a cellulose-TA-PVA-PVDF membrane (Gao et al. 2021).

Figure 14

Process of making a cellulose-TA-PVA-PVDF membrane (Gao et al. 2021).

Close modal
Li et al. (2020) describe the fabrication of filter paper coated with polypyrrole or a polypyrrole/cellulose acetate membrane (PPy@FP or PPy@CA) produced via in situ polymerization as shown in Figure 15 (Li et al. 2020). Scanning electron microscopy (SEM) images reveal that the roughness of the PPy@FP membrane can be modified by manipulating the polymerization time, and the results show that the membrane has a nanoscale rough structure. However, the overall reflections are reduced. ATR-FTIR, XPS, and conductivity tests showed that polypyrrole had been successfully coated on the filter paper by the use of these spectrometers. The modified membrane's surface has both superhydrophobicity and contact angle properties, according to the results of contact angle testing. This new material's remarkable chemical resistance to acid, mild alkali, and salty environments is made possible by its green and renewable cellulose and chemical-stable polypyrrole. High flux (over 3,000 L/m2/h1 for mixes, over 1,000 for oil–water and water–oil emulsions, and over 100 L/m2/h1 for water–oil emulsions) and good separation efficiency, about 99% is achieved with the modified membranes. This product can also be recycled in other oil–water systems due to its excellent recyclability.
Figure 15

Membrane preparation and polypyrrole-cellulose substrate linking mechanism (Li et al. 2020).

Figure 15

Membrane preparation and polypyrrole-cellulose substrate linking mechanism (Li et al. 2020).

Close modal
Xie et al. (2019) used a one-step sol-gel technique to create a sustainable super-hydrophobic cellulosic membrane (SOCM) for effective oil–water separation as shown in Figure 16 (Xie et al. 2019). A one-step micro/nano hierarchical structure design and chemical modification of cellulose membrane (CM) from tetraethyl orthosilicate (TEOS) and hexadecyltrimethoxysilane (HDTMS) hydrolysis and polycondensation have resulted in the membrane's superhydrophobicity. In terms of oil–water mixes, the SOCM demonstrates high separation efficiency above 98%. Aside from its extraordinary reusability, the SOCM exhibits excellent resilience to environmental (acid, alkali, and sea salt) and mechanical (tape peeling and scratch-resistance) degradation (at least 10 times). SOCM is a good candidate material for large-scale oil–water separation because of its ease of manufacture, stability, environmental friendliness, and low cost.
Figure 16

(a) Before and (b) after separation of oil–water, (c) pressure of water intrusion (Xie et al. 2019).

Figure 16

(a) Before and (b) after separation of oil–water, (c) pressure of water intrusion (Xie et al. 2019).

Close modal

Table 4 summarizes information on the cellulose acetate membrane preparation. It is illustrating the recent development of the performance of the cellulose acetate membranes for water/oil emulsion separation via improving the performance of synthesized membranes, which can be achieved by improving the characteristics of the prepared membranes by using some modern techniques to improve the polymer casting solution.

Table 4

Separation of oil–water via membranes made of cellulose acetate

MembraneOilsAdditives/ component usedPerformance/efficiencyPore sizePorosityContact angleRef.
Cellulose-TA-PVA-PVDF membrane diesel oil, lubricant oil, pump oil sunflower oil TA-PVA TA-PVA-PVDF 99.99% UOCA is more than 150° Gao et al. (2021)  
Modified cellulose acetate membranes decane and marcol 52 white oil GO, LDH and SeP more than 98% 0.45 μm  UOCA 151.1 ± 2.1° Li et al. (2017)  
Flat-sheet and hollow fiber cellulose membranes crude oil ionic liquid more than 95% 0.01 and 10 μm Kim et al. (2019)  
Bacterial cellulose filter motor oil corn steep liquor 100% 76.12% WCA 90° Galdino et al. (2020)  
CNF-PDA-coated cellulose acetate membrane diesel, cydohexane, toluene, low viscidity crude oil PDA more than 99% 167.7 nm UOCA 157.3° Yin et al. (2020)  
PPy@FP and PPy@CA-50 membrane hexadecane, cyclohexane and dimethylbenzene pyrrole  around 99% 0.3608 μm WCA 150° Li et al. (2020)  
Cellulose hollow fiber membranes machine oil PEG more than 99% Li et al. (2006)  
Cellulose membrane (SOCM) diesel oil, petroleum ether, toluene, hexane, dichloroethane TEOS HDTMS more than 98% 1520 μm WCA 164.4° Xie et al. (2019)  
Cellulose filter membrane vegetable oil, hexane, crude oil, silicone oil, and PET ether silane and myrcene high levels of extractive activity WCA 160 ± 4° Kollarigowda et al. (2017)  
Nanofibrous cellulosic membrane mineral oil, kerosene, n-hexane, and petroleum ether DMAc more than 99% 1–4 μm OCA more than 150° Hong et al. (2018)  
Cellulose membrane n-hexane, trichloromethane, soybean oil, gasoline NaOH NaClO2 98% OCA 151.3◦ Li et al. (2021c)  
Composite cellulose membrane dichloromethane, kerosene NBKP more than 95% 53.99% WCA 162.3° Wang et al. (2021)  
Cellulose/LDH membrane chloroform, toluene, diesel oil, petroleum ether, and heptane LDH more than 93% 15 ∼ 20 μm WCA 154 ± 1.8° Yue et al. (2017)  
Cellulose membrane (FP@SA/CaCO3petroleum ether, soybean oil, hexane, toluene dichloroethane CaCO3 more than 99.2% OCA 151.1° Yang et al. (2021)  
Bacterial cellulose membranes (BCMs) hexane more than 99.7% OCA more than 150° Sai et al. (2020)  
CA-g-PAN membranes pump oil PAN FRR more than 90%, WCA 56.9 ± 0.9° Chen et al. (2009)  
MembraneOilsAdditives/ component usedPerformance/efficiencyPore sizePorosityContact angleRef.
Cellulose-TA-PVA-PVDF membrane diesel oil, lubricant oil, pump oil sunflower oil TA-PVA TA-PVA-PVDF 99.99% UOCA is more than 150° Gao et al. (2021)  
Modified cellulose acetate membranes decane and marcol 52 white oil GO, LDH and SeP more than 98% 0.45 μm  UOCA 151.1 ± 2.1° Li et al. (2017)  
Flat-sheet and hollow fiber cellulose membranes crude oil ionic liquid more than 95% 0.01 and 10 μm Kim et al. (2019)  
Bacterial cellulose filter motor oil corn steep liquor 100% 76.12% WCA 90° Galdino et al. (2020)  
CNF-PDA-coated cellulose acetate membrane diesel, cydohexane, toluene, low viscidity crude oil PDA more than 99% 167.7 nm UOCA 157.3° Yin et al. (2020)  
PPy@FP and PPy@CA-50 membrane hexadecane, cyclohexane and dimethylbenzene pyrrole  around 99% 0.3608 μm WCA 150° Li et al. (2020)  
Cellulose hollow fiber membranes machine oil PEG more than 99% Li et al. (2006)  
Cellulose membrane (SOCM) diesel oil, petroleum ether, toluene, hexane, dichloroethane TEOS HDTMS more than 98% 1520 μm WCA 164.4° Xie et al. (2019)  
Cellulose filter membrane vegetable oil, hexane, crude oil, silicone oil, and PET ether silane and myrcene high levels of extractive activity WCA 160 ± 4° Kollarigowda et al. (2017)  
Nanofibrous cellulosic membrane mineral oil, kerosene, n-hexane, and petroleum ether DMAc more than 99% 1–4 μm OCA more than 150° Hong et al. (2018)  
Cellulose membrane n-hexane, trichloromethane, soybean oil, gasoline NaOH NaClO2 98% OCA 151.3◦ Li et al. (2021c)  
Composite cellulose membrane dichloromethane, kerosene NBKP more than 95% 53.99% WCA 162.3° Wang et al. (2021)  
Cellulose/LDH membrane chloroform, toluene, diesel oil, petroleum ether, and heptane LDH more than 93% 15 ∼ 20 μm WCA 154 ± 1.8° Yue et al. (2017)  
Cellulose membrane (FP@SA/CaCO3petroleum ether, soybean oil, hexane, toluene dichloroethane CaCO3 more than 99.2% OCA 151.1° Yang et al. (2021)  
Bacterial cellulose membranes (BCMs) hexane more than 99.7% OCA more than 150° Sai et al. (2020)  
CA-g-PAN membranes pump oil PAN FRR more than 90%, WCA 56.9 ± 0.9° Chen et al. (2009)  

Green membranes were harnessed to separate oil–water emulsion mixtures, selectively and efficiently, based on their unique structural properties, distinct production methods, and the materials used to enhance their defining characteristics are reviewed in this article. Because membrane oil–water separation/rejection performance is strongly influenced by membrane morphology, several eco-friendly preparations and design options were explored in depth. According to a comprehensive evaluation of membrane preparation processes, several synthesizing active membrane capabilities can be identified. The ecological environment faces a serious threat from oil spills and industrial contamination. Filtration improvements for oily wastewater have been given more attention due to safety concerns. Membrane separation technology, with its low energy consumption, provides a promising and effective choice for treating wastewater. However, finding low-cost, strong, and environmentally friendly composite membranes capable of providing a high level of separation remains a challenge. Most authors agree that there is an urgent, ongoing need to prioritize the use of green composite membrane for oil–water emulsion separation for the reasons stated above. Oily wastewater is a byproduct of several industrial processes and is becoming a growing environmental issue. As a result, researchers are looking for easy, cheap, environmentally friendly, and easily scalable methods of manufacturing novel materials that can efficiently separate oil–water at low cost.

The support of Department of Chemical Engineering, University of Technology Technology Baghdad, Iraq is gratefully acknowledged.

All relevant data are included in the paper or its Supplementary Information.

The authors declare there is no conflict.

Abbas
T. K.
,
Rashid
K. T.
&
Alsalhy
Q. F.
2022
Chemical engineering research and design NaY zeolite-polyethersulfone-modified membranes for the removal of cesium-137 from liquid radioactive waste
.
Chem. Eng. Res. Des.
179
,
535
548
.
doi:10.1016/j.cherd.2022.02.001
.
Abdulredha
M. M.
,
Siti Aslina
H.
&
Luqman
C. A.
2020
Overview on petroleum emulsions, formation, influence and demulsification treatment techniques
.
Arab. J. Chem.
13
(
1
),
3403
3428
.
doi:10.1016/j.arabjc.2018.11.014
.
Abu-Saied
M. A.
,
Wycisk
R.
,
Abbassy
M. M.
,
Abd El-Naim
G.
,
El-Demerdash
F.
,
Youssef
M. E.
,
Bassuony
H.
&
Peter
N. P.
2017
Sulfated chitosan/PVA absorbent membrane for removal of copper and nickel ions from aqueous solutions – fabrication and sorption studies
.
Carbohydr. Polym.
165
,
149
158
.
doi:10.1016/j.carbpol.2016.12.039
.
Adetunji
A. I.
&
Olaniran
A. O.
2021
Treatment of industrial oily wastewater by advanced technologies: a review
.
Appl. Water Sci.
11
(
6
),
1
19
.
doi:10.1007/s13201-021-01430-4
.
Al-Ani
D. M.
,
Al-Ani
F. H.
,
Alsalhy
Q. F.
&
Ibrahim
S. S.
2019
Preparation and characterization of ultrafiltration membranes from PPSU-PES polymer blend for dye removal
.
Chem. Eng. Commun.
,
1
19
.
doi:10.1080/00986445.2019.1683546
.
Al-Ani
F. H.
,
Alsalhy
Q. F.
,
Raheem
R. S.
,
Rashid
K. T.
&
Figoli
A.
2020
Experimental investigation of the effect of implanting tio2-nps on pvc for long-term uf membrane performance to treat refinery wastewater
.
Membranes (Basel)
10
(
4
),
1
22
.
doi:10.3390/membranes10040077
.
Ali
A.
,
Awang
M.
,
Mat
R.
,
Johari
A.
,
Kamaruddin
M. J.
&
Sulaiman
W. R. W.
2014
Influence of hydrophilic polymer on pure water permeation, permeability coefficient, and porosity of polysulfone blend membranes
.
Adv. Mater. Res.
931–932
,
168
172
.
doi:10.4028/www.scientific.net/AMR.931-932.168
.
Alsalhy
Q. F.
,
Al-Ani
F. H.
,
Al-Najar
A. E.
&
Jabuk
S. I. A.
2018
A study of the effect of embedding ZnO-NPs on PVC membrane performance use in actual hospital wastewater treatment by membrane bioreactor
.
Chem. Eng. Process. Process Intensif.
130
,
262
274
.
doi:10.1016/j.cep.2018.06.019
.
Amini
S.
,
Salehi
H.
,
Setayeshmehr
M.
&
Ghorbani
M.
2021
Natural and synthetic polymeric scaffolds used in peripheral nerve tissue engineering: advantages and disadvantages
.
Polym. Adv. Technol.
32
(
6
),
2267
2289
.
doi:10.1002/pat.5263
.
Anitha
A.
,
Sowmya
S. A.
,
Sudheesh Kumara
P. T.
,
Deepthia
S.
,
Chennazhia
K. P.
,
Ehrlichb
H.
,
Tsurkanc
M.
&
Jayakumar
R.
2014
Chitin and chitosan in selected biomedical applications
.
Prog. Polym. Sci.
39
(
9
),
1644
1667
.
doi:10.1016/j.progpolymsci.2014.02.008
.
Antony
R.
,
Arun
T.
&
Manickam
S. T. D.
2019
A review on applications of chitosan-based Schiff bases
.
Int. J. Biol. Macromol.
129
,
615
633
.
doi:10.1016/j.ijbiomac.2019.02.047
.
Ardeshiri
F.
,
Akbari
A.
,
Peyravi
M.
&
Jahanshahi
M.
2019
A hydrophilic-oleophobic chitosan/SiO2 composite membrane to enhance oil fouling resistance in membrane distillation
.
Korean J. Chem. Eng.
36
(
2
),
255
264
.
doi:10.1007/s11814-018-0188-4
.
Baggio
A.
,
Doan
H. N.
,
Vo
P. P.
,
Kinashi
K.
,
Sakai
W.
,
Tsutsumi
N.
,
Fuse
Y.
&
Sangermano
M.
2021
Chitosan-functionalized recycled polyethylene terephthalate nanofibrous membrane for sustainable on-demand oil-water separation
.
Global Challenges
5
(
4
),
2000107
.
doi:10.1002/gch2.202000107
.
Bandehali
S.
,
Sanaeepur
H.
,
Ebadi Amooghin
A.
,
Shirazian
S.
&
Ramakrishna
S.
2021
Biodegradable polymers for membrane separation
.
Sep. Purif. Technol.
269
.
doi:10.1016/j.seppur.2021.118731
.
Cai
Y.
,
Shi
S. Q.
,
Fang
Z.
&
Li
J.
2021
Design, development, and outlook of superwettability membranes in oil/water emulsions separation
.
Adv. Mater. Interfaces
8
(
18
),
1
30
.
doi:10.1002/admi.202100799
.
Cao
J.
,
You
J.
,
Zhang
L.
&
Zhou
J.
2018
Homogeneous synthesis and characterization of chitosan ethers prepared in aqueous alkali/urea solutions
.
Carbohydr. Polym.
185
,
138
144
.
doi:10.1016/j.carbpol.2018.01.010
.
Capello
C.
,
Fischer
U.
&
Hungerbühler
K.
2007
What is a green solvent? A comprehensive framework for the environmental assessment of solvents
.
Green Chem.
9
(
9
),
927
993
.
doi:10.1039/b617536h
.
Chang
P. Y.
,
Wang
J.
,
Li
S. Y.
&
Suen
S. Y.
2021
Biodegradable polymeric membranes for organic solvent/water pervaporation applications
.
Membranes (Basel)
11
(
12
).
doi:10.3390/membranes11120970
.
Chen
W.
,
Su
Y.
,
Zheng
L.
,
Wang
L.
&
Jiang
Z.
2009
The improved oil/water separation performance of cellulose acetate-graft-polyacrylonitrile membranes
.
J. Memb. Sci.
337
(
1–2
),
98
105
.
doi:10.1016/j.memsci.2009.03.029
.
Chen
M.
,
Zhu
L.
,
Dong
Y.
,
Li
L.
&
Liu
J.
2016
Waste-to-resource strategy to fabricate highly porous Whisker-structured mullite ceramic membrane for simulated oil-in-water emulsion wastewater treatment
.
ACS Sustainable Chem. Eng.
4
(
4
),
2098
2106
.
doi:10.1021/acssuschemeng.5b01519
.
Chen
M.
,
Zhu
L.
,
Chen
J.
,
Yang
F.
,
Tang
C. Y.
&
Michael
D.
2019
Journal Pre-proof
.
Credou
J.
&
Berthelot
T.
2014
Cellulose: from biocompatible to bioactive material
.
J. Mater. Chem. B
2
(
30
),
4767
4788
.
doi:10.1039/c4tb00431k
.
Dmitrieva
E. S.
,
Anokhina
T. S.
,
Novitsky
E. G.
,
Volkov
V. V.
,
Volkov
A. V.
&
Borisov
I. L.
2022
Polymeric membranes for oil-water separation: a review
.
Polymers (Basel)
14
(
5
),
1
25
.
doi:10.3390/polym14050980
.
Doan
H. N.
,
Vo
P. P.
,
Baggio
A.
,
Negoro
M.
,
Kinashi
K.
,
Fuse
Y.
,
Sakai
W.
&
Tsutsumi
N.
2021
Environmentally friendly Chitosan-modified polycaprolactone nanofiber/nanonet membrane for controllable oil/water separation
.
ACS Appl. Polym. Mater.
3
(
8
),
3891
3901
.
doi:10.1021/acsapm.1c00463
.
Dumitrescu
L. N.
,
Neacsu
P.
,
Necula
M. G.
,
Bonciu
A.
,
Marascu
V.
,
Cimpean
A.
,
Moldovan
A.
,
Rotaru
A.
,
Dinca
V.
&
Dinescu
M.
2020
Induced hydrophilicity and In vitro preliminary and subsequent thermal treatment
.
Molecules
25
,
882
.
El-Naas
M. H.
,
Alhaija
M. A.
&
Al-Zuhair
S.
2014
Evaluation of a three-step process for the treatment of petroleum refinery wastewater
.
J. Environ. Chem. Eng.
2
(
1
),
56
62
.
doi:10.1016/j.jece.2013.11.024
.
Fakhru'l-Razi
A.
,
Pendashteh
A.
,
Abdullah
L. C.
,
Biak
D. R. A.
,
Madaeni
S. S.
&
Abidin
Z. Z.
2009
Review of technologies for oil and gas produced water treatment
.
J. Hazard. Mater.
170
(
2–3
),
530
551
.
doi:10.1016/j.jhazmat.2009.05.044
.
Fan
G.
,
Diao
Y.
,
Huang
B.
,
Yang
H.
,
Liu
X.
&
Chen
J.
2020
Preparation of superhydrophobic and superoleophilic polylactic acid nonwoven filter for oil/water separation
.
J. Dispers. Sci. Technol.
41
(
2
),
289
296
.
doi:10.1080/01932691.2019.1571926
.
Fane
A. G.
,
Wang
R.
&
Hu
M. X.
2015
Synthetic membranes for water purification: status and future angewandte
. (
150
),
2
21
.
doi:10.1002/anie.201409783
.
Figoli
A.
,
Marino
T.
,
Simone
S.
,
Di Nicolò
E.
,
Li
X.-M.
,
He
T.
,
Tornaghid
S.
&
Drioli
E.
2014
Towards non-toxic solvents for membrane preparation: a review
.
Green Chem.
16
(
9
),
4034
4059
.
doi:10.1039/c4gc00613e
.
Galdino
C. J. S.
,
Maia
A. D.
,
Meira
H. M.
,
Souza
T. C.
,
Amorim
J. D.P.
,
Almeida
F. C.G.
,
Costa
A. F. S.
&
Sarubbo
L. A.
2020
Use of a bacterial cellulose filter for the removal of oil from wastewater
.
Process Biochem.
91
,
288
296
.
doi:10.1016/j.procbio.2019.12.020
.
Galiano
F.
,
Ghanim
A.H.
,
Rashid
K.T.
,
Marino
T.
,
Simone
S.
,
Alsalhy
Q. F.
&
Figoli
A.
2019
Preparation and characterization of green polylactic acid (PLA) membranes for organic/organic separation by pervaporation
.
Clean Technol. Environ. Policy
21
(
1
),
109
120
.
doi:10.1007/s10098-018-1621-4
.
Gebreslase
G. A.
2018
Review on membranes for the filtration of aqueous based solution: oil in water emulsion
.
J. Membr. Sci. Technol.
08
(
02
).
doi:10.4172/2155-9589.1000188
.
Ghadhban
M. Y.
,
Majdi
H. S.
,
Rashid
K. T.
,
Alsalhy
Q. F.
,
Lakshmi
D. S.
,
Salih
I. K.
&
Figoli
A.
2020
Removal of dye from a leather tanning factory by flat-sheet blend ultrafiltration (UF) membrane
.
Membranes (Basel)
10
(
3
).
doi:10.3390/membranes10030047
.
Ghorbani
M.
,
Hassan Vakili
M.
&
Ameri
E.
2021
Fabrication and evaluation of a biopolymer-based nanocomposite membrane for oily wastewater treatment
.
Mater. Today Commun.
28
,
102560
.
doi:10.1016/j.mtcomm.2021.102560
.
Gopinath
V.
,
Saravanan
S.
,
Al-Maleki
A. R.
,
Ramesh
M.
&
Vadivelu
J.
2018
A review of natural polysaccharides for drug delivery applications: special focus on cellulose, starch and glycogen
.
Biomed. Pharmacother.
107
,
96
108
.
doi:10.1016/j.biopha.2018.07.136
.
Gu
J.
,
Xiao
P.
,
Chen
P.
,
Zhang
L.
,
Wang
H.
,
Dai
L.
,
Song
L.
,
Huang
Y.
,
Zhang
J.
&
Chen
T.
2017
Functionalization of biodegradable PLA nonwoven fabric as superoleophilic and superhydrophobic material for efficient oil absorption and oil/water separation
.
ACS Appl. Mater. Interfaces
9
(
7
),
5968
5973
.
doi:10.1021/acsami.6b13547
.
Hadi
S.
,
Mohammed
A. A.
,
Al-Jubouri
S. M.
,
Abd
M. F.
,
Majdi
H. S.
,
Alsalhy
Q. F.
,
Rashid
K. T.
,
Ibrahim
S. S.
,
Salih
I. K.
&
Figoli
A.
2020
Experimental and theoretical analysis of lead Pb 2 + and Cd 2 + retention from a single salt using a hollow fiber PES membrane
.
membranes
10
(
136
).
doi:10.3390/membranes10070136
.
Haghighat
A. K.
,
Olsen
M. G.
,
Vigil
R. D.
&
Sarkar
A.
2020
Droplet coalescence and phase separation in a topical ointment: effects of fluid shear and temperature
.
Int. J. Pharm.
591
,
119872
.
doi:10.1016/j.ijpharm.2020.119872
.
Hamad
K.
,
Kaseem
M.
,
Ko
Y. G.
&
Deri
F.
2014
Biodegradable polymer blends and composites: an overview
.
Polym. Sci. - Ser. A
56
(
6
),
812
829
.
doi:10.1134/S0965545X14060054
.
Hejnfelt
A.
&
Angelidaki
I.
2009
Anaerobic digestion of slaughterhouse by-products
.
Biomass Bioenergy
33
(
8
),
1046
1054
.
doi:10.1016/j.biombioe.2009.03.004
.
Hong
S. K.
,
Bae
S.
,
Jeon
H.
,
Kim
M.
,
Cho
S. J.
&
Lim
G.
2018
An underwater superoleophobic nanofibrous cellulosic membrane for oil/water separation with high separation flux and high chemical stability
.
Nanoscale
10
(
6
)
doi: 10.1039/C7NR08199E
.
Huang
X.
,
Wen
X.
,
Cheng
J.
&
Yang
Z.
2012
Sticky superhydrophobic filter paper developed by dip-coating of fluorinated waterborne epoxy emulsion
.
Appl. Surf. Sci.
258
(
22
),
8739
8746
.
doi:10.1016/j.apsusc.2012.05.083
.
Huang
W.
,
Wang
Y.
,
Chen
C.
,
Law
J. L. M.
,
Houghton
M.
&
Chen
L.
2016
Fabrication of flexible self-standing all-cellulose nanofibrous composite membranes for virus removal
.
Carbohydr. Polym.
143
,
9
17
.
doi:10.1016/j.carbpol.2016.02.011
.
Huang
H.
,
Li
Y.
,
Zhao
L.
,
Yu
Y.
,
Xu
J.
,
Yin
X.
,
Chen
S.
,
Wu
J.
,
Yue
H.
,
Wang
H.
&
Wang
L.
2019
A facile fabrication of chitosan modified PPS-based microfiber membrane for effective antibacterial activity and oil-in-water emulsion separation
.
Cellulose
26
(
4
),
2599
2611
.
doi:10.1007/s10570-019-02274-7
.
Ibrahim
I.
,
Hassan
M. A.
,
Abd-Aziz
S.
,
Shirai
Y.
,
Andou
Y.
,
Othman
M. R.
,
Ali
A. A. M.
&
Zakaria
M. R.
2016
Reduction of residual pollutants from biologically treated palm oil mill effluent final discharge by steam activated bioadsorbent from oil palm biomass
.
J. Clean. Prod.
doi:10.1016/j.jclepro.2016.09.066
.
Iwata
T.
2015
Biodegradable and bio-based polymers: future prospects of eco-friendly plastics
.
Angew. Chemie – Int. Ed.
54
(
11
),
3210
3215
.
doi:10.1002/anie.201410770
.
Jiang
F.
,
Cui
S.
,
Song
N.
,
Shi
L.
&
Ding
P.
2018
Hydrogen bond-regulated boron nitride network structures for improved thermal conductive property of polyamide-imide composites
.
ACS Appl. Mater. Interfaces
10
(
19
),
16812
16821
.
doi:10.1021/acsami.8b03522
.
Jiang
S.
,
Sun
H.
,
Wang
H.
,
Ladewig
B. P.
&
Yao
Z.
2021
A comprehensive review on the synthesis and applications of ion exchange membranes
.
Chemosphere
282
,
130817
.
doi:10.1016/j.chemosphere.2021.130817
.
Kadhim
R. J.
,
Al-Ani
F. H.
,
Al-Shaeli
M.
,
Alsalhy
Q. F.
&
Figoli
A.
2020
Removal of dyes using graphene oxide (Go) mixed matrix membranes
.
Membranes (Basel)
10
(
12
),
1
24
.
doi:10.3390/membranes10120366
.
Kamal
H.
,
Abd-Elrahim
F. M.
&
Lotfy
S.
2014
Characterization and some properties of cellulose acetate-co-polyethylene oxide blends prepared by the use of gamma irradiation
.
J. Radiat. Res. Appl. Sci.
7
(
2
),
146
153
.
doi:10.1016/j.jrras.2014.01.003
.
Kargarzadeh
H.
,
Huang
J.
,
Lin
N.
,
Ahmad
I.
,
Mariano
M.
,
Dufresne
A.
,
Thomas
S.
&
Gałęski
A.
2018
Recent developments in nanocellulose-based biodegradable polymers, thermoplastic polymers, and porous nanocomposites
.
Prog. Polym. Sci.
87
,
197
227
.
doi:10.1016/j.progpolymsci.2018.07.008
.
Kim
D.
,
Livazovic
S.
,
Falca
G.
&
Nunes
S. P.
2019
Oil-water separation using membranes manufactured from cellulose/ionic liquid solutions
.
ACS Sustain. Chem. Eng.
7
(
6
),
5649
5659
.
doi:10.1021/acssuschemeng.8b04038
.
Kollarigowda
R. H.
,
Abraham
S.
&
Montemagno
C. D.
2017
Antifouling cellulose hybrid biomembrane for effective oil/water separation
.
ACS Appl. Mater. Interfaces
9
(
35
),
29812
29819
.
doi:10.1021/acsami.7b09087
.
Kumar
S.
&
Maiti
P.
2016
Controlled biodegradation of polymers using nanoparticles and its application
.
RSC Adv.
6
(
72
),
67449
67480
.
doi:10.1039/c6ra08641a
.
Lee
A.
&
Darling
S. B.
2016
Membrane materials for water purification: design, development, and application
.
Environ. Sci. Water Res. Technol.
2
(
1
),
17
42
.
doi:10.1039/C5EW00159E
.
Lee
B.
&
Patel
R.
2020
Review on oil/water separation membrane technology
.
Membrane Journal
30
(
6
),
359
372
.
Lee
W. J.
,
Goh
P. S.
,
Lau
W. J.
,
Ismail
A. F.
&
Hilal
N.
2021
Green approaches for sustainable development of liquid separation membrane
.
Membranes (Basel)
11
(
4
),
1
35
.
doi:10.3390/membranes11040235
.
Li
H. J.
,
Cao
Y. M.
,
Qin
J. J.
,
Jie
X. M.
,
Wang
T. H.
,
Liu
J. H.
&
Yuan
Q.
2006
Development and characterization of anti-fouling cellulose hollow fiber UF membranes for oil-water separation
.
J. Memb. Sci.
279
(
1–2
),
328
335
.
doi:10.1016/j.memsci.2005.12.025
.
Li
S.
,
Zhang
S.
&
Wang
X.
2008
Fabrication of superhydrophobic cellulose-based materials through a solution-immersion process
.
Langmuir
24
(
10
),
5585
5590
.
doi:10.1021/la800157t
.
Li
X.
,
Liu
J.
,
Wang
Y.
,
Xu
H.
,
Cao
Y.
&
Deng
X.
2015
Separation of oil from wastewater by coal adsorption-column flotation
.
Sep. Sci. Technol.
50
(
4
),
583
591
.
doi:10.1080/01496395.2014.956759
.
Li
Y.
,
He
Y.
,
Fan
Y.
,
Shi
H.
,
Wang
Y.
,
Ma
J.
&
Li
H.
2020
Novel dual superlyophobic cellulose membrane for multiple oil/water separation
.
Chemosphere
241
.
doi:10.1016/j.chemosphere.2019.125067
.
Li
Y.
,
Lin
Z.
,
Wang
X.
,
Duan
Z.
,
Lu
P.
,
Li
S.
,
Ji
D.
,
Wang
Z.
,
Li
G.
,
Yu
D.
&
Liu
W.
2021a
High-hydrophobic ZIF-8@PLA composite aerogel and application for oil-water separation
.
Sep. Purif. Technol.
270
,
118794
.
doi:10.1016/j.seppur.2021.118794
.
Li
Y.
,
Chen
H.
,
Wang
Q.
&
Li
G.
2021b
Further modification of oil–water separation membrane based on chitosan and titanium dioxide
.
J. Mater. Sci. Mater. Electron.
32
(
4
),
4823
4832
.
doi:10.1007/s10854-020-05221-6
.
Li
Z.
,
Qiu
F.
,
Yue
X.
,
Tian
Q.
,
Yang
D.
&
Zhang
T.
2021c
Eco-friendly self-crosslinking cellulose membrane with high mechanical properties from renewable resources for oil/water emulsion separation
.
J. Environ. Chem. Eng.
9
(
5
).
doi:10.1016/j.jece.2021.105857
.
Li
H.
,
Zhang
H.
,
Hu
J.
,
Wang
G.
,
Cui
J.
&
Zhang
Y.
2022
Facile preparation of hydrophobic PLA/PBE micro-nanofiber fabrics via the melt-blown process for high-efficacy oil/water separation
.
Polymers
14
,
1667
.
doi.org/10.3390/polym14091667
.
Liu
Z.
,
Zhao
J.
,
Li
W.
,
Xing
J.
,
Xu
L.
&
He
J.
2019a
Humidity-induced porous poly(lactic acid) membrane with enhanced flux for oil–water separation
.
Adsorpt. Sci. Technol.
37
(
5–6
),
389
400
.
doi:10.1177/0263617418816200
.
Liu
J.
,
Chen
Y.
,
Han
T.
,
Cheng
M.
,
Zhang
W.
,
Long
J.
&
Fu
X.
2019b
A biomimetic SiO2@chitosan composite as highly-efficient adsorbent for removing heavy metal ions in drinking water
.
Chemosphere
214
,
738
742
.
doi:10.1016/j.chemosphere.2018.09.172
.
Loh
A.
,
Shankar
R.
,
Ha
S. Y.
,
An
J. G.
&
Yim
U. H.
2020
Stability of mechanically and chemically dispersed oil: effect of particle types on oil dispersion
.
Sci. Total Environ.
716
,
135343
.
doi:10.1016/j.scitotenv.2019.135343
.
Losev
N. V.
,
Nikiforova
T. E.
,
Makarova
L. I.
&
Lipatova
I. M.
2017
The effect of mechanical activation on the structure and sorption activity of chitin
.
Prot. Met. Phys. Chem. Surfaces
53
(
5
),
801
806
.
doi:10.1134/S2070205117040141
.
Lu
J.
,
Cui
C.
,
Yu
Q.
,
Su
J.
&
Han
J.
2022
Robustly superhydrophobic polylactic acid nonwoven membranes for efficient oil/water separation
.
J. Porous Mater.
29
(
1
),
241
247
.
doi:10.1007/s10934-021-01160-7
.
Ma
J.
&
Sahai
Y.
2013
Chitosan biopolymer for fuel cell applications
.
Carbohydr. Polym.
92
(
2
),
955
975
.
doi:10.1016/j.carbpol.2012.10.015
.
Mamah
S. C.
,
Goh
P. S.
,
Ismail
A. F.
,
Suzaimi
N. D.
,
Yogarathinam
L. T.
,
Raji
Y. O.
&
EL-badawi
T. H.
2021
Recent development in modification of polysulfone membrane for water treatment application
.
J. Water Process Eng.
40
,
101835
.
doi:10.1016/j.jwpe.2020.101835
.
Mearns
A. J.
,
Morrison
A. M.
,
Arthur
C.
,
Rutherford
N.
,
Bissell
M.
&
Rempel-hester
M. A.
2020
Effects of pollution on marine organisms
. (
2019
),
1510
1532
.
doi:10.1002/wer.1400
.
Mohamed
M. A.
,
Mutalib
M. A.
,
Hir
Z. A. M.
,
Zain
M.F.M.
,
Mohamad
A. B.
,
Minggu
L. J.
,
Awang
N. A.
&
Salleh
W. N. W.
2017
An overview on cellulose-based material in tailoring bio-hybrid nanostructured photocatalysts for water treatment and renewable energy applications
.
Int. J. Biol. Macromol.
103
,
1232
1256
.
doi:10.1016/j.ijbiomac.2017.05.181
.
Nikovska
K.
2012
Study of olive oil-in-water emulsions with protein emulsifiers
.
Emirates J. Food Agric.
24
(
1
),
17
24
.
doi:10.9755/ejfa.v24i1.10594
.
Nugraha
M. W.
,
Wirzal
M. D. H.
,
Ali
F.
,
Roza
L.
&
Sambudi
N. S.
2021
Electrospun polylactic acid/ tungsten oxide/ amino-functionalized carbon quantum dots (PLA/WO3/N-CQDs) fibers for oil/water separation and photocatalytic decolorization
.
J. Environ. Chem. Eng.
9
(
5
),
106033
.
doi:10.1016/j.jece.2021.106033
.
Nunes
Y. L.
,
de Menezes
F. L.
,
de Sousa
I. G.
,
Cavalcante
A. L. G.
,
Cavalcante
F. T. T.
,
da Silva Moreira
K.
,
de Oliveira
A. L. B.
,
Mota
G. F.
,
da Silva Souza
J. E.
,
de Aguiar Falcão
I. R.
&
Rocha
T. G.
2021
Chemical and physical chitosan modification for designing enzymatic industrial biocatalysts: how to choose the best strategy?
Int. J. Biol. Macromol.
181
,
1124
1170
.
doi:10.1016/j.ijbiomac.2021.04.004
.
Padaki
M.
,
Murali
R. S.
,
Abdullah
M. S.
,
Misdan
N.
,
Moslehyani
A.
,
Kassim
M. A.
,
Hilal
N.
&
Ismail
A. F.
2015
Membrane technology enhancement in oil-water separation. A review
.
Desalination
357
,
197
207
.
Elsevier. doi:10.1016/j.desal.2014.11.023
.
Ponnanikajamideen
M.
,
Han
K.
,
Zhou
T.
,
Malini
M.
&
Rajeshkumar
S.
2021
Efficient separation of Oil-In-Water emulsions with functionalized superhydrophilic graphene oxide-Chitosan based composite membrane
.
Int. J. Waste Resour.
411
,
1
7
.
Poulton
S. W.
,
Krom
M. D.
,
Van Rijn
J.
&
Raiswell
R.
2002
The use of hydrous iron (III) oxides for the removal of hydrogen sulphide in aqueous systems
.
Water Research
36
,
825
834
.
Qin
Y.
,
Shen
H.
,
Han
L.
,
Zhu
Z.
,
Pan
F.
,
Yang
S.
&
Yin
X.
2020
Mechanically robust janus poly(lactic acid) hybrid fibrous membranes toward highly efficient switchable separation of surfactant-Stabilized Oil/Water emulsions
.
ACS Appl. Mater. Interfaces
12
(
45
),
50879
50888
.
doi:10.1021/acsami.0c15310
.
Rashid
K. T.
,
Alayan
H. M.
,
Mahdi
A. E.
,
AL-Baiati
M. N.
,
Majdi
H. S.
,
Salih
I. K.
,
Ali
J. M.
&
Alsalhy
Q. F.
2022
Novel water-soluble poly(terephthalic-co-glycerol-g-fumaric acid) copolymer nanoparticles harnessed as pore formers for polyethersulfone membrane modification: permeability–selectivity tradeoff Manipulation
.
Water
14
(
9
),
1507
.
Robertson
S. J.
,
Mcgill
W. B.
,
Massicotte
H. B.
&
Rutherford
P. M.
2007
Petroleum hydrocarbon contamination in boreal forest soils: a mycorrhizal ecosystems perspective
.
82
,
213
240
.
doi:10.1111/j.1469-185X.2007.00012.x
.
Safi
N. N.
,
Ibrahim
S. S.
,
Zouli
N.
,
Majdi
H. S.
,
Alsalhy
Q. F.
,
Drioli
E.
&
Figoli
A.
2020
A systematic framework for optimizing a sweeping gas membrane distillation (SGMD)
.
Membranes (Basel)
10
(
10
),
1
18
.
doi:10.3390/membranes10100254
.
Sai
H.
,
Jin
Z.
,
Wang
Y.
,
Fu
R.
,
Wang
Y.
&
Ma
L.
2020
Facile and green route to fabricate bacterial cellulose membrane with superwettability for Oil–Water separation
.
Adv. Sustainable Syst.
4
(
7
),
1
9
.
doi:10.1002/adsu.202000042
.
Saththasivam
J.
,
Loganathan
K.
&
Sarp
S.
2016
An overview of oil-water separation using gas flotation systems
.
Chemosphere
144
,
671
680
.
doi:10.1016/j.chemosphere.2015.08.087
.
Seddighi
M.
&
Hejazi
S. M.
2015
Water – oil separation performance of technical textiles used for marine pollution disasters
.
Mar. Pollut. Bull.
doi:10.1016/j.marpolbul.2015.05.011
.
Shi
J.
,
Zhang
L.
,
Xiao
P.
,
Huang
Y.
,
Chen
P.
,
Wang
X.
,
Gu
J.
,
Zhang
J.
&
Chen
T.
2018
Biodegradable PLA nonwoven fabric with controllable wettability for efficient water purification and photocatalysis degradation
.
ACS Sustain. Chem. Eng.
6
(
2
),
2445
2452
.
doi:10.1021/acssuschemeng.7b03897
.
Shi
Y.
,
Wang
Z.
,
Du
X.
,
Gong
B.
,
Jegatheesan
V.
&
Haq
I. U.
2021
Recent advances in the prediction of fouling in membrane bioreactors
.
Membranes (Basel)
11
(
6
).
doi:10.3390/membranes11060381
.
Singh
H.
,
Saxena
P.
&
Puri
Y. M.
2021
The manufacturing and applications of the porous metal membranes: a critical review
.
CIRP J. Manuf. Sci. Technol.
33
,
339
368
.
doi:10.1016/j.cirpj.2021.03.014
.
Sivakumar
M.
,
Mohan
D. R.
&
Rangarajan
R.
2006
Studies on cellulose acetate-polysulfone ultrafiltration membranes: iI. effect of additive concentration
.
J. Memb. Sci.
268
(
2
),
208
219
.
doi:10.1016/j.memsci.2005.06.017
.
Sun
X.
,
Yang
S.
,
Xue
B.
,
Li
J.
,
Wang
Y.
,
Gao
C.
&
Qin
S.
2021
Controllable surface morphology transition from inter-connected pores to flower-like structures for super-hydrophobic poly (L-lactic acid) films
.
Surf. Coatings Technol.
412
,
127032
.
doi:10.1016/j.surfcoat.2021.127032
.
Tanudjaja
H. J.
,
Hejase
C. A.
,
Tarabara
V. V.
,
Fane
A. G.
&
Chew
J. W.
2019
Membrane-based separation for oily wastewater: a practical perspective
.
Water Res.
doi:10.1016/j.watres.2019.03.021
.
Victorovna
O.
2001
Role of asphaltenes and resins in the stabilization of water-in-hydrocarbon emulsions
.
doi:10.11575/PRISM/21129
.
Wang
H.
,
Fang
J.
,
Cheng
T.
,
Ding
J.
,
Qu
L.
,
Dai
L.
,
Wang
X.
&
Lin
T.
2008
One-step coating of fluoro-containing silica nanoparticles for universal generation of surface superhydrophobicity
.
Chem. Commun.
(
7
),
877
879
.
doi:10.1039/b714352d
.
Wang
C. F.
,
Yang
S. Y.
&
Kuo
S. W.
2017
Eco-friendly superwetting material for highly effective separations of oil/water mixtures and oil-in-water emulsions
.
Sci. Rep.
7
.
doi:10.1038/srep43053
.
Wang
H.
,
Hu
X.
,
Ke
Z.
,
Du
C. Z.
,
Zheng
L.
,
Wang
C.
&
Yuan
Z.
2018
Review: porous metal filters and membranes for Oil–Water separation
.
Nanoscale Res. Lett.
13
.
doi:10.1186/s11671-018-2693-0
.
Wang
X.
,
Pan
Y.
,
Liu
X.
,
Liu
H.
,
Li
N.
,
Liu
C.
,
Schubert
D. W.
&
Shen
C.
2019
Facile fabrication of superhydrophobic and eco-friendly poly(lactic acid) foam for oil-water separation via skin peeling
.
ACS Appl. Mater. Interfaces
11
(
15
),
14362
14367
.
doi:10.1021/acsami.9b02285
.
Wang
F. P.
,
Zhao
X. J.
,
Wahid
F.
,
Zhao
X. Q.
,
Qin
X. T.
,
Bai
H.
,
Xie
Y. Y.
,
Zhong
C.
&
Jia
S. R.
2021
Sustainable, superhydrophobic membranes based on bacterial cellulose for gravity-driven oil/water separation
.
Carbohydrate Polymers
253
,
117220
.
Wei
Y.
,
Qi
H.
,
Gong
X.
&
Zhao
S.
2018
Specially wettable membranes for oil–water separation
.
Adv. Mater. Interfaces
5
(
23
).
doi:10.1002/admi.201800576
.
Wei
Y.
,
Jin
Y.
&
Zhang
W.
2020
Treatment of high-concentration wastewater from an oil and gas field via a paired sequencing batch and ceramic membrane reactor
.
Int. J. Environ. Res. Public Health
17
(
6
).
doi:10.3390/ijerph17061953
.
Xie
A.
,
Cui
J.
,
Chen
Y.
,
Lang
J.
,
Li
C.
,
Yan
Y.
&
Dai
J.
2019
One-step facile fabrication of sustainable cellulose membrane with superhydrophobicity via a sol-gel strategy for efficient oil/water separation
.
Surf. Coatings Technol.
361
,
19
26
.
doi:10.1016/j.surfcoat.2019.01.040
.
Xing
R.
,
Huang
R.
,
Qi
W.
,
Su
R.
&
He
Z.
2018
Three-dimensionally printed bioinspired superhydrophobic PLA membrane for oil-water separation
.
AIChE J.
64
(
10
),
3700
3708
.
doi:10.1002/aic.16347
.
Xing
R.
,
Yang
B.
,
Huang
R.
,
Qi
W.
,
Su
R.
,
Binks
B. P.
&
He
Z.
2019
Three-Dimensionally printed bioinspired superhydrophobic packings for Oil-in-Water emulsion separation
.
Langmuir
35
(
39
),
12799
12806
.
doi:10.1021/acs.langmuir.9b02131
.
Xiong
Y.
,
Xu
L.
,
Nie
K.
,
Jin
C.
,
Sun
Q.
&
Xu
X.
2019
Green construction of an oil-water separator at room temperature and its promotion to an adsorption membrane
.
Langmuir
35
(
34
),
11071
11079
.
doi:10.1021/acs.langmuir.9b01480
.
Xue
Z.
,
Sun
Z.
,
Cao
Y.
,
Chen
Y.
,
Tao
L.
,
Li
K.
,
Feng
L.
,
Fu
Q.
&
Wei
Y.
2013
Superoleophilic and superhydrophobic biodegradable material with porous structures for oil absorption and oil-water separation
.
RSC Adv.
3
(
45
),
23432
23437
.
doi:10.1039/c3ra41902a
.
Yahya
A. A.
,
Rashid
K. T.
,
Ghadhban
M. Y.
,
Mousa
N. E.
,
Majdi
H. S.
,
Salih
I. K.
&
Alsalhy
Q. F.
2021
Removal of 4-nitrophenol from aqueous solution by using polyphenylsulfone-based blend membranes: characterization and performance
.
Membranes (Basel)
11
(
3
),
1
20
.
doi:10.3390/membranes11030171
.
Yang
J.
,
Cui
J.
,
Xie
A.
,
Dai
J.
,
Li
C.
&
Yan
Y.
2021
Facile preparation of superhydrophilic/underwater superoleophobic cellulose membrane with CaCO3 particles for oil/water separation
.
Colloids Surfaces A Physicochem. Eng. Asp.
608
,
125583
.
doi:10.1016/j.colsurfa.2020.125583
.
Yazdan
M. S.
,
Ahad
T.
&
Jahan
I.
2020
Review on the evaluation of the impacts of wastewater disposal in hydraulic fracturing industry in the United States
.
Technologies
8
,
67
.
Yetisen
A. K.
,
Akram
M. S.
&
Lowe
C. R.
2013
Paper-based microfluidic point-of-care diagnostic devices
.
Lab Chip
13
(
12
),
2210
2251
.
doi:10.1039/c3lc50169h
.
Yin
X.
,
He
Y.
,
Wang
Y.
,
Yu
H.
,
Chen
J.
&
Gao
Y.
2020
Bio-inspired antifouling cellulose nanofiber multifunctional filtration membrane for highly efficient emulsion separation and application in water purification
.
Korean J. Chem. Eng.
37
(
10
),
1751
1760
.
doi:10.1007/s11814-020-0568-4
.
Yu
Y.
,
Chen
H.
,
Liu
Y.
,
Craig
V. S.
,
Wang
C.
,
Li
L. H.
&
Chen
Y.
2015
Superhydrophobic and superoleophilic porous boron nitride nanosheet/Polyvinylidene fluoride composite material for oil-polluted water cleanup
.
Adv. Mater. Interfaces
2
(
1
),
1
10
.
doi:10.1002/admi.201400267
.
Yu
H.
,
Liu
H.
,
Yuan
X.
,
Ding
W.
,
Li
Y.
&
Wang
J.
2019
Separation of oil-water emulsion and adsorption of Cu(II) on a chitosan-cellulose acetate-TiO2 based membrane
.
Chemosphere
235
(
Ii
),
239
247
.
doi:10.1016/j.chemosphere.2019.06.060
.
Zakuwan
S. Z.
,
Ahmad
I.
,
Tahrim
N. A.
&
Mohamed
F.
2021
Functional hydrophilic membrane for oil–water separation based on modified bio-based chitosan–gelatin
.
Polymers (Basel)
13
(
7
),
1
20
.
doi:10.3390/polym13071176
.
Zeng
Q.
,
Ma
P.
,
Su
X.
,
Lai
D.
,
Lai
X.
,
Zeng
X.
&
Li
H.
2020
Facile fabrication of superhydrophobic and magnetic poly(lactic acid) nonwoven fabric for oil-water separation
.
Ind. Eng. Chem. Res.
59
(
19
),
9127
9135
.
doi:10.1021/acs.iecr.0c01033
.
Zhang
D.
,
Jin
X. Z.
,
Huang
T.
,
Zhang
N.
,
Qi
X. D.
,
Yang
J. H.
,
Zhou
Z. W.
&
Wang
Y.
2019
Electrospun fibrous membranes with dual-scaled porous structure: super hydrophobicity, super lipophilicity, excellent water adhesion, and anti-icing for highly efficient oil adsorption/separation
.
ACS Appl. Mater. Interfaces
11
(
5
),
5073
5083
.
doi:10.1021/acsami.8b19523
.
Zhao
S.
,
Tao
Z.
,
Chen
L.
,
Han
M.
,
Zhao
B.
,
Tian
X.
,
Wang
L.
&
Meng
F.
2021
An antifouling catechol/chitosan-modified polyvinylidene fluoride membrane for sustainable oil-in-water emulsions separation
.
Front. Environ. Sci. Eng.
15
(
4
).
doi:10.1007/s11783-020-1355-5
.
Zhong
L.
,
Sun
C.
,
Yang
F.
&
Dong
Y.
2021a
Superhydrophilic spinel ceramic membranes for oily emulsion wastewater treatment
.
J. Water Process Eng.
42
.
doi:10.1016/j.jwpe.2021.102161
.
Zhou
W.
,
Fang
Y.
,
Li
P.
,
Yan
L.
,
Fan
X.
,
Wang
Z.
,
Zhang
W.
&
Liu
H.
2019b
Ampholytic Chitosan/Alginate composite nanofibrous membranes with super anti-crude oil-fouling behavior and multifunctional oil/water separation properties
.
ACS Sustainable Chem. Eng.
7
(
18
),
15463
15470
.
doi:10.1021/acssuschemeng.9b03002
.
Zhu
L.
,
Chen
M.
,
Dong
Y.
,
Tang
C. Y.
&
Huang
A.
2016
A low-cost mullite-titania composite ceramic hollow fiber micro filtration membrane for highly efficient separation of oil-in-water emulsion
.
Appl. Polym. Sci.
90
,
277
285
.
Zhu
C.
,
Jiang
W.
,
Hu
J.
,
Sun
P.
,
Li
A.
&
Zhang
Q.
2020
Polylactic acid nonwoven fabric surface modified with stereocomplex crystals for recyclable use in oil/water separation
.
ACS Appl. Polym. Mater.
2
(
7
),
2509
2516
.
doi:10.1021/acsapm.9b01197
.
Zhu
X.
,
Yu
Z.
,
Zeng
H.
,
Feng
X.
,
Liu
Y.
,
Cao
K.
,
Li
X.
&
Long
R.
2021
Using a simple method to prepare UiO-66-NH2/chitosan composite membranes for oil–water separation
.
J. Appl. Polym. Sci.
138
(
31
).
doi:10.1002/app.50765
.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).