ClO plays a key role in the UV/chlorine process besides Cl, Cl2 − , and OH. In many experiments, ClO proved to be the main reactant that destroyed the organic pollutants in advanced oxidation process. About 200 rate constants of ClO reactions were collected from the literature, grouped together according to the chemical structure, and the molecular structure dependencies were evaluated. In most experiments, ClO was produced by the photolytic reaction of HClO/ClO−. For a few compounds, the rate constants were determined by the absolute method, pulse radiolysis. Most values were obtained in steady-state experiments by competitive technique or by complex kinetic calculations after measuring the pollutant degradation in the UV/chlorine process. About 30% of the listed rate constant values were derived in quantum chemical or in structure-reactivity (QSAR) calculations. The values show at least six orders of magnitude variations with the molecular structure. Molecules having electron-rich parts, e.g., phenol/phenolate, amine, or sulfite group have high rate constants in the range of 108–109 mol−1 dm3 s−1. ClO is inactive in reactions with saturated molecules, alcohols, or simple aromatic molecules.

  • ClO has high rate constants with molecules having electron-rich activated parts.

  • ClO has low reactivity with saturated molecules, alcohols, and simple aromatics.

  • For most compounds, only one published value is available.

  • Values obtained in different laboratories show a large scatter.

In the UV/chlorine process, several radical species contribute to the degradation of organic pollutants (De Laat & Stefan 2018); the most important ones are chlorine atom (Cl), dichloride radical anion (Cl2•−), chlorine monoxide radical (ClO) (with common name reactive chlorine species (RCS)) and hydroxyl radical (OH). We collected the reduction potential values of these radicals in Table 1, the ClO/ClO couple has the lowest value, 1.39 V vs. NHE (Armstrong et al. 2015), and consequently, it has the smallest oxidation capacity. As the source of active radicals, hypochlorite is added to the solutions. Hypochlorite also forms when chlorine (Cl2) is dissolved in water (Reactions (1) and (2)). Cl together with OH forms in the photoreaction of HClO and ClO (Reactions (3)–(5)). In the presence of a sufficient concentration of chloride ions (Cl) in water, there is a dimerization and Cl2•− radical ion forms (Reaction (6)). Cl2•− participation in chemistry is characteristic of the low pH values (pH < 6). At high pH, Cl2•− transforms to OH (Wojnárovits & Takács 2021, 2022). These oxidizing radicals (Cl and OH) react with organic molecules in radical addition to the double bonds, in H-atom abstraction from the saturated parts of molecules, or by single electron transfer (SET) reaction (Cl, Cl2•−).
(1)
(2)
(3)
(4)
(5)
(6)
Table 1

Reduction potentials of inorganic couples vs. NHE (Armstrong et al. 2015)

Redox coupleReduction potential, V
Cl/Cl 2.43 
Cl2•−/2Cl 2.1 
ClO/ClO 1.39 
OH/OH 1.9 
Redox coupleReduction potential, V
Cl/Cl 2.43 
Cl2•−/2Cl 2.1 
ClO/ClO 1.39 
OH/OH 1.9 
ClO forms in the reaction OH or O•− with hypochlorite ions/hypochlorous acid (ClO/HOCl) (Reactions (7) and (8)). Under practical water treatment applications ClO may also be produced in the reactions of several other radicals, e.g., CO3•− (Reaction (9), Alfassi et al. 1988; Huie et al. 1991), since its reduction potential is smaller than the reduction potentials of many other radicals participating in the chemistry during water treatment in advanced oxidation processes. The chemistry of ClO is less known as the chemistries of Cl, or OH (Neta et al. 1988).
(7)
(8)
(9)
The chlorine monoxide radical (ClO), similar to the mentioned other three radicals is considered to be a one-electron oxidant (Alfassi et al. 1988; Armstrong et al. 2015; Guo et al. 2017). Due to its lower reactivity as the other three, the concentration of ClO during the UV/chlorine process has been reported to be several orders of magnitude higher than those of Cl and OH (Zheng et al. 2020; Li et al. 2021a). Because of technical reasons, much fewer rate constant values are published for this radical than for the other radicals mentioned. The ClO radicals dimerize in a very fast reaction forming Cl2O2 (Reaction (10)). This reaction has been the subject of many investigations and the average of a large number of rate constant values is around 2.5 × 109 mol−1 dm3 s−1 (Neta et al. 1988).
(10)

In their classic paper, Alfassi et al. (1988) used Reactions (7) and (8) to produce ClO and determined the rate constants in pulse radiolysis experiments. The radiolysis of water supplied OH. In transient measurements carried out by pulse radiolysis or (laser) flash photolysis ClO exhibits weak light absorption with the maximum at 280 nm and molar absorbance of ∼900 mol−1 dm3 cm−1 (Alfassi et al. 1988). Due to the very weak absorbance of ClO, in transient kinetic measurements the product absorbance is used in rate constant determination. However, there is a complication: HClO/ClO (pKa = 7.5) is also an oxidant, which reacts with many organic molecules. Alfassi et al. (1988) selected several organic molecules/ions (among others 4-cyanophenoxide ion, 4-nitrophenoxide ion, 4-methoxybenzyl alcohol) which had low reactivity with ClO and determined their rate constants at high pH. The reactivity of ClO is smaller than that of HClO. In the later rate constant determinations, the authors usually disregarded this reaction possibility, although many rate constant measurements were made at slightly alkaline pH (8.4).

Most of the experimentally determined rate constants published on ClO reactions were obtained in UV/chlorine experiments for the radical production and using competitive kinetics for calculation of the rate constants. The authors tried to establish reaction conditions, under which ClO was the main reactive intermediate reacting with the solute of interest. As we mentioned earlier, UV photolysis of ClOH/ClO produces both OH and Cl (Reactions (3)–(5)). Cl has a rather colourful chemistry in such systems (Wojnárovits & Takács 2022). At relatively high HOCl/ClO concentration, Cl mainly disappears in reaction with HOCl/ClO ((11) and (12)). At low HOCl/ClO and high Cl concentration the (6) dimerization reaction dominates. In addition to the reactions of OH ((7) and (8)) the Cl reactions also contribute to the formation of ClO ((11) and (12)).
(11)
(12)
A large number of rate constants were determined under steady-state conditions using Equation (13). In the competitive method, the rate constant relative to a reference compound is obtained. The absolute value is calculated by multiplying the relative value with the known rate constant of the competitor. In Equation (13), S and C stand for the target and competitor molecules, kClO•,S and kClO•,C, respectively, are used for the rate constants. [S]0 and [S], [C]0 and [C] represent the concentrations at the beginning and after time t, respectively.
(13)
The most often applied reference compounds are 1,4-dimethoxybenzene with kClO• = 2.1 × 109 mol−1 dm3 s−1 and 2,5-dimethylbenzoate ion with kClO• = 7.0 × 108 mol−1 dm3 s−1 (Alfassi et al. 1988). Guo et al. (2018) used gemfibrozil as a reference compound with kClO• = 4.16 × 108 mol−1 dm3 s−1. The latter value was obtained also in competitive experiments in previous papers of the authors. They added NaClO to the solutions at a slightly alkaline pH (8.4) and prepared ClO by the UV photolysis of ClO (Reaction (4), followed by (5), (7) or (8)). The reaction mixture also contained HCO3, which was assumed to remove Cl, Cl2•− and OH (Reactions (14)–(16)), but was assumed to have low reactivity with ClO (Buxton et al. 1988; Neta et al. 1988; Mertens & von Sonntag 1995). The carbonate radical anion (CO3•−), as it was mentioned before, in reaction with ClO also produces ClO, although the rate constant is low (Reaction (9)) (Alfassi et al. 1988; Huie et al. 1991). In the experiments of Guo et al. (2017, 2018) the main radical species in the solution was ClO. Kim et al. (2020), Kong et al. (2018a, 2018b, 2020a, 2020b) and Wu et al. (2017) also used the competitive method for rate constant determination.
(14)
(15)
(16)

Li et al. (2021a), Peng et al. (2022) and An et al. (2022) used quantum chemical calculations (DFT, density functional theory) for the determination of rate constants for a large number of organic molecules. Guo et al. (2018), besides experimental rate constant determinations, also used structure-reactivity correlations, applying the Hammett substituent constants to predict kClO• values. The same technique was employed by Sun et al. (2016) and Huang & Zhang (2022). The reduction potentials were also used for estimations of rate constants in ClO reactions.

Zhou et al. (2019) determined the rate constants for the reaction with substituted benzoic acids by modeling calculations with the involvement of a large number of reactions of the active chlorine species during the UV/chlorine process. This technique was also applied for rate constant determination in several other works.

Compilation of the published rate constants collected from original publications is given in the tables. The pH values and the accuracies are indicated as they were published in the original works. The error bounds in tables represent the σ-level uncertainty. All of the rate constant determinations were made around room temperature. The tables show also the pKa values of compounds collected from several publications, e.g., Perrin (1965), Babic et al. (2007), and Shalaeva et al. (2008). The methods of kClO• determinations are indicated by the following abbreviations: PR, pulse radiolysis; FP, flash photolysis; Comp., competitive method; Model./Fit./Simul., modeling/fitting/simulation in complex reaction systems often taking into account large numbers of reactions (usually UV/chlorine), Est./Pred./Assum. estimated/predicted/assumed based on the rate constant of structurally similar compounds (e.g., using the Hammett substituent constants), Calc., quantum chemical calculations.

Small inorganic and organic molecules

ClO reacts with azide (N3), chlorite (ClO2) and ozonide (O3) ions in (SET reactions with rate constants in the range of 108–109 mol−1 dm3 s−1 (Table 2) (Klaening et al. 1984; Alfassi et al. 1988). We show this reaction in the example of N3 in Equation (17):
(17)
Table 2

Small inorganic and organic molecules

CompoundkClO•, mol−1 dm3 s−1Method, pHReference
Azide ion (N32.5 ± 0.5 × 108 PR, 11 Alfassi et al. (1988)  
Chlorite ion, ClO2 9.4 × 108 PR, 10 Alfassi et al. (1988)  
Chlorine dioxide, ClO2 7.4 × 109 Est. Quiroga & Perissinotti (2005)  
Ozonide ion 1.0 × 109 FP Klaening et al. (1984)  
Carbonate ion 6 × 102 PR, 11.2 Huie et al. (1991)  
Formate ion <1 × 106 PR, 12 Alfassi et al. (1988)  
tert-Butanol 1.3 ± 0.1 × 107 Comp. Wu et al. (2017)  
Negligible Kong et al. (2018b)  
Negligible Wang et al. (2020)  
1,4-Dioxane Negligible  Zhang et al. (2019)  
1,1,2,3-TCBD 3.08 ± 0.51 × 107 Comp., 8.4 Kong et al. (2020a)  
(E)-1,1,2,4-TCBD 2.22 ± 0.77 × 107 Comp., 8.4 Kong et al. (2020a)  
(Z)-1,1,3,4-TCBD 4.98 ± 0.16 × 107 Comp., 8.4 Kong et al. (2020a)  
1,1,4,4-TCBD 2.07 ± 0.25 × 106 Comp., 8.4 Kong et al. (2020a)  
(Z,Z)-1,1,3,4-TCBD <106 Comp., 8.4 Kong et al. (2020a)  
(Z)-1,1,2,3,4-PCBD 1.31 ± 0.12 × 107 Comp., 8.4 Kong et al. (2020a)  
1,1,2,4,4-PCBD 1.48 ± 0.21 × 107 Comp., 8.4 Kong et al. (2020a)  
HCBD <106 Comp., 8.4 Kong et al. (2020a)  
CompoundkClO•, mol−1 dm3 s−1Method, pHReference
Azide ion (N32.5 ± 0.5 × 108 PR, 11 Alfassi et al. (1988)  
Chlorite ion, ClO2 9.4 × 108 PR, 10 Alfassi et al. (1988)  
Chlorine dioxide, ClO2 7.4 × 109 Est. Quiroga & Perissinotti (2005)  
Ozonide ion 1.0 × 109 FP Klaening et al. (1984)  
Carbonate ion 6 × 102 PR, 11.2 Huie et al. (1991)  
Formate ion <1 × 106 PR, 12 Alfassi et al. (1988)  
tert-Butanol 1.3 ± 0.1 × 107 Comp. Wu et al. (2017)  
Negligible Kong et al. (2018b)  
Negligible Wang et al. (2020)  
1,4-Dioxane Negligible  Zhang et al. (2019)  
1,1,2,3-TCBD 3.08 ± 0.51 × 107 Comp., 8.4 Kong et al. (2020a)  
(E)-1,1,2,4-TCBD 2.22 ± 0.77 × 107 Comp., 8.4 Kong et al. (2020a)  
(Z)-1,1,3,4-TCBD 4.98 ± 0.16 × 107 Comp., 8.4 Kong et al. (2020a)  
1,1,4,4-TCBD 2.07 ± 0.25 × 106 Comp., 8.4 Kong et al. (2020a)  
(Z,Z)-1,1,3,4-TCBD <106 Comp., 8.4 Kong et al. (2020a)  
(Z)-1,1,2,3,4-PCBD 1.31 ± 0.12 × 107 Comp., 8.4 Kong et al. (2020a)  
1,1,2,4,4-PCBD 1.48 ± 0.21 × 107 Comp., 8.4 Kong et al. (2020a)  
HCBD <106 Comp., 8.4 Kong et al. (2020a)  

PR, pulse radiolysis; Est., estimated; FP, flash photolysis; Comp., competitive.

The reaction is made possible by the lower standard reduction potential of the N3/N3 couple (1.33 V vs. NHE, Armstrong et al. 2015) than that of the ClO/ClO couple (1.39 V). However, due to the small difference in the reduction potentials, the electron transfer rate constant is relatively small, 2.5 ± 0.5 × 108 mol−1 dm3 s−1. The azide radical is considered to be a highly selective one-electron oxidant (Alfassi & Schuler 1985). The rate constant of carbonate ion with ClO is very low, 6 × 102 mol−1 dm3 s−1 (Reaction (-9), Huie et al. 1991). The reaction leads to an equilibrium in the electron transfer (Reactions (9) and (-9)) (Huie et al. 1991; Armstrong et al. 2015). As it was mentioned previously, the low rate constant of Reaction (-9), 6 × 102 mol−1 dm3 s−1, has special importance. The reactions of OH, Cl and Cl2•− with carbonate ion (Reactions (14)–(16)) increase the importance of ClO reaction in the UV/chlorine process (Zhu et al. 2021).

Formate ions (HCOO) have low reactivity with ClO, Alfassi et al. (1988) gave only an upper limit for the rate constant value, <1 × 106 mol−1 dm3 s−1. Wu et al. (2017) using the competitive technique determined kClO• = 1.3 ± 0.1 × 107 mol−1 dm3 s−1 for the reaction with tert-butanol. This rate constant value seems to be highly overestimated. Wang et al. (2020) reported only a minimal effect of a high concentration of tert-butanol on the ClO induced degradation of primidone. No effect of tert-butanol was found in the degradation of iopamidol (Kong et al. 2018a).

Kong et al. (2020a) carried out detailed investigations on the reactions of chlorinated butadienes (CBDs). In Table 2 and in Figure 1, TC refers to tetrachloro-, PC to pentachloro- and HC to hexachloro derivatives of butadiene (BD). These halogenated olefinic compounds are mainly generated during the manufacturing of chlorinated hydrocarbons. They are used as intermediates in the production of pesticides, fungicides and also have several other industrial applications. In the UV/chlorine process ClO was shown to be the dominant RCS in their removal. The rate constants of reactions are in the 107 mol−1 dm3 s-1 range, except the reactions with (Z,Z)-1,2,3,4-TCBD and HCBD. The latter butadienes react with kClO• <106 mol−1 dm3 s−1. The authors assumed that the reaction takes place by SET from HOMO of the butadienes to the LUMO of ClO.
Figure 1

Chlorinated butadienes.

Figure 1

Chlorinated butadienes.

Close modal

Benzene, substituted benzenes

The rate constants collected in Table 3, with one exception, are from the work of Li et al. (2021a) obtained in quantum chemical calculations (Figure 2). kClO• values were calculated using the transition state theory (TST), they were in the 102–105 mol−1 dm3 s−1 range. In this range it is complicated to determine kClO• values experimentally. The value calculated by Peng et al. (2022) for nitrobenzene, 2.56 × 107 mol−1 dm3 s−1, is much higher than the value of Li et al. (2021a), 2.64 × 103 mol−1 dm3 s−1. ClO addition to the aromatic rings has been suggested as the main mechanism of the reaction.
Table 3

Rate constants of benzenes

CompoundkClO•, mol−1 dm3 s−1Method, pHReference
Benzene 3.22 × 104 Calc. Li et al. (2021a)  
Toluene 1.56 × 104 Calc. Li et al. (2021a)  
Fluorobenzene 4.83 × 104 Calc. Li et al. (2021a)  
Chlorobenzene 4.76 × 104 Calc. Li et al. (2021a)  
Bromobenzene 2.37 × 104 Calc. Li et al. (2021a)  
Benzonitrile 2.31 × 103 Calc. Li et al. (2021a)  
Benzaldehyde 3.18 × 105 Calc. Li et al. (2021a)  
Benzamide 9.87 × 103 Calc. Li et al. (2021a)  
Nitrobenzene 2.64 × 103 Calc. Li et al. (2021a)  
2.56 × 107 Calc., 7 Peng et al. (2022)  
Phenylmethanol 4.06 × 106 Calc. Li et al. (2021a)  
Benzenesulfonic acid 4.77 × 102 Calc., neutral Li et al. (2021a)  
9.99 × 103 Calc., anion Li et al. (2021a)  
Acetophenone 9.69 × 104 Calc. Li et al. (2021a)  
Benzenesulfonamide 5.04 × 102 Calc. Li et al. (2021a)  
Tribromomethylbenzene 3.54 × 103 Calc. Li et al. (2021a)  
Trichloromethylbenzene 9.13 × 103 Calc. Li et al. (2021a)  
Trifluoromethylbenzene 1.89 × 103 Calc. Li et al. (2021a)  
CompoundkClO•, mol−1 dm3 s−1Method, pHReference
Benzene 3.22 × 104 Calc. Li et al. (2021a)  
Toluene 1.56 × 104 Calc. Li et al. (2021a)  
Fluorobenzene 4.83 × 104 Calc. Li et al. (2021a)  
Chlorobenzene 4.76 × 104 Calc. Li et al. (2021a)  
Bromobenzene 2.37 × 104 Calc. Li et al. (2021a)  
Benzonitrile 2.31 × 103 Calc. Li et al. (2021a)  
Benzaldehyde 3.18 × 105 Calc. Li et al. (2021a)  
Benzamide 9.87 × 103 Calc. Li et al. (2021a)  
Nitrobenzene 2.64 × 103 Calc. Li et al. (2021a)  
2.56 × 107 Calc., 7 Peng et al. (2022)  
Phenylmethanol 4.06 × 106 Calc. Li et al. (2021a)  
Benzenesulfonic acid 4.77 × 102 Calc., neutral Li et al. (2021a)  
9.99 × 103 Calc., anion Li et al. (2021a)  
Acetophenone 9.69 × 104 Calc. Li et al. (2021a)  
Benzenesulfonamide 5.04 × 102 Calc. Li et al. (2021a)  
Tribromomethylbenzene 3.54 × 103 Calc. Li et al. (2021a)  
Trichloromethylbenzene 9.13 × 103 Calc. Li et al. (2021a)  
Trifluoromethylbenzene 1.89 × 103 Calc. Li et al. (2021a)  

Calc., calculated.

Figure 2

Benzenes and substituted benzenes.

Figure 2

Benzenes and substituted benzenes.

Close modal

Phenols and anilines

We show the compounds in these classes with published rate constants in Figure 3, a compilation of the kClO• values is given in Table 4. The majority of rate constants here also was established in quantum chemical calculations (Li et al. 2021a, 2022; An et al. 2022) or estimated based on using the rate constants of structurally similar compounds, as well as using structure–activity relationship (QSAR) calculations (Li et al. 2021a; Huang & Zhang 2022). An et al. (2022) to establish the rate constants used TST combined with diffusion-limited effects, while Li et al. (2021a, 2022) used, as they said, conventional TST. The quantum chemical calculations of Li et al. (2021a) showed that radical adduct formation (RAF) rather than SET reaction was prominent in ClO-initiated reactions of aromatic compounds. A similar conclusion was reported by An et al. (2022). In subsequent reactions of the ClO-adduct, the Cl-end of the –OCl moiety shifted to the benzene ring, which was the key to hydroxylation and chlorination of aromatic compounds by ClO. In contrast to the mechanism suggestions based on quantum chemical calculations, Alfassi et al. (1988) assumed that the basic mechanism in the reaction with phenoxides is the SET. In the reaction of the cyanophenoxide ion (CNC6H4O, Reaction (18)) they directly observed the formation of cyanophenoxyl radical (CNC6H4O) in pulse radiolysis experiments.
(18)
Table 4

Rate constants of phenols and anilines

Compound, pKakClO•, mol−1 dm3 s−1Method, pHReference
Phenol, 9.96 7.5 × 106 Calc., neutral Li et al. (2021a)  
1.0 × 107 Est., neutral Huang & Zhang (2022)  
6.3 × 106 Calc., neutral An et al. (2022)  
2.4 × 1010 Calc., anion Li et al. (2021a)  
1.0 × 109 Est., anion Huang & Zhang (2022)  
3.71 × 1010 Calc., anion An et al. (2022)  
Catechol, 9.5 1.0 × 107 Est., neutral Huang & Zhang (2022)  
1.0 × 109 Est., anion Huang & Zhang (2022)  
Resorcinol, 9.2 1.0 × 107 Est., neutral Huang & Zhang (2022)  
1.0 × 109 Est., anion Huang & Zhang (2022)  
Hydroquinone, 9.9 1.0 × 107 Est., neutral Huang & Zhang (2022)  
1.0 × 109 Est., anion Huang & Zhang (2022)  
p-Cresol, 10.36 1.55 × 106 Model., 6 Shruti Salil (2018)  
2-Chlorophenol, 8.56 1.3 × 106 Est., neutral Huang & Zhang (2022)  
1.1 × 108 Est., anion Huang & Zhang (2022)  
4-Chlorophenol, 9.2 1.3 × 106 Est., neutral Huang & Zhang (2022)  
1.1 × 108 Est., anion Huang & Zhang (2022)  
2-Bromophenol, 8.45 1.6 × 106 Est., neutral Huang & Zhang (2022)  
1.4 × 108 Est., anion Huang & Zhang (2022)  
4-Bromophenol, 9.17 1.6 × 106 Est., neutral Huang & Zhang (2022)  
1.4 × 108 Est., anion Huang & Zhang (2022)  
4-Cyanophenol 8.0 1.4 × 109 PR, 13, anion Alfassi et al. (1988)  
4-Nitrophenol, 7.15 1.5 × 109 PR, 10, anion Alfassi et al. (1988)  
2,4,6-Tribromophenol, 6.8 1.9 × 105 Calc., neutral Li et al. (2022)  
3.75 × 1010 Calc., anion Li et al. (2022)  
Bisphenol A, 9.6 2.23 × 108 Est., 8.4 Guo et al. (2018)  
Anisole 3.26 × 106 Calc. Li et al. (2021a)  
4-Methoxybenzyl alcohol <1.0 × 107 PR, 11 Alfassi et al. (1988)  
1,4-Dimethoxybenzene 2.1 × 109 PR, 13 Alfassi et al. (1988)  
8.04 × 108 Calc. Li et al. (2021a)  
Ethoxybenzene 2.84 × 106 Calc. Li et al. (2021a)  
2,4,6-Tribromoanisol 4.26 × 104 Calc. Li et al. (2022)  
1-Methoxy-2-Methylbenzene 4.25 × 106 Calc. Li et al. (2021a)  
1,2-Dimethoxybenzene 2.41 × 108 Calc. Li et al. (2021a)  
1,3-Dimethoxybenzene 3.8 × 108 Calc. Li et al. (2021a  
1,2,3-Trimethoxybenzene 4.8 × 109 Calc. Li et al. (2021a)  
1,2,4-Trimethoxybenzene 1.39 × 1010 Calc. Li et al. (2021a)  
1,3,5-Trimethoxybenzene 1.4 × 109 Calc. Li et al. (2021a)  
1,2,3-Trimethoxy-5-methylbenzene 5.47 × 109 Calc. Li et al. (2021a)  
Aniline, 4.63 2.07 × 103 Calc., cation Li et al. (2021a)  
1.11 × 1010 Calc., neutral Li et al. (2021a)  
3.28 × 105 Calc., cation An et al. (2022)  
1.47 × 1010 Calc., neutral An et al. (2022)  
p-Aminophenol, 5.4, 9.9 8.05 × 105 Calc., cation An et al. (2022)  
5.35 × 1010 Calc., anion An et al. (2022)  
N,N-Dimethylaniline, 5.15 1.81 × 1010 Calc. Li et al. (2021a)  
N-Ethylaniline, 5.12 2.66 × 1010 Calc. Li et al. (2021a)  
N-Methylaniline, 4.85 2.49 × 1010 Calc. Li et al. (2021a)  
N-Phenylacetamide 1.8 × 107 Calc. Li et al. (2021a)  
Phenacetin 2.13 × 108 Calc. Li et al. (2021a)  
Phenyl acetate 1.32 × 104 Calc. Li et al. (2021a)  
Acetaminophen (paracetamol), 9.4 3.53 × 109 Comp., 8.5 Giang et al. (2017)  
4.61 × 108 Calc., neutral Li et al. (2021a)  
7.74 × 106 Calc., neutral Wang et al. (2021b)  
Compound, pKakClO•, mol−1 dm3 s−1Method, pHReference
Phenol, 9.96 7.5 × 106 Calc., neutral Li et al. (2021a)  
1.0 × 107 Est., neutral Huang & Zhang (2022)  
6.3 × 106 Calc., neutral An et al. (2022)  
2.4 × 1010 Calc., anion Li et al. (2021a)  
1.0 × 109 Est., anion Huang & Zhang (2022)  
3.71 × 1010 Calc., anion An et al. (2022)  
Catechol, 9.5 1.0 × 107 Est., neutral Huang & Zhang (2022)  
1.0 × 109 Est., anion Huang & Zhang (2022)  
Resorcinol, 9.2 1.0 × 107 Est., neutral Huang & Zhang (2022)  
1.0 × 109 Est., anion Huang & Zhang (2022)  
Hydroquinone, 9.9 1.0 × 107 Est., neutral Huang & Zhang (2022)  
1.0 × 109 Est., anion Huang & Zhang (2022)  
p-Cresol, 10.36 1.55 × 106 Model., 6 Shruti Salil (2018)  
2-Chlorophenol, 8.56 1.3 × 106 Est., neutral Huang & Zhang (2022)  
1.1 × 108 Est., anion Huang & Zhang (2022)  
4-Chlorophenol, 9.2 1.3 × 106 Est., neutral Huang & Zhang (2022)  
1.1 × 108 Est., anion Huang & Zhang (2022)  
2-Bromophenol, 8.45 1.6 × 106 Est., neutral Huang & Zhang (2022)  
1.4 × 108 Est., anion Huang & Zhang (2022)  
4-Bromophenol, 9.17 1.6 × 106 Est., neutral Huang & Zhang (2022)  
1.4 × 108 Est., anion Huang & Zhang (2022)  
4-Cyanophenol 8.0 1.4 × 109 PR, 13, anion Alfassi et al. (1988)  
4-Nitrophenol, 7.15 1.5 × 109 PR, 10, anion Alfassi et al. (1988)  
2,4,6-Tribromophenol, 6.8 1.9 × 105 Calc., neutral Li et al. (2022)  
3.75 × 1010 Calc., anion Li et al. (2022)  
Bisphenol A, 9.6 2.23 × 108 Est., 8.4 Guo et al. (2018)  
Anisole 3.26 × 106 Calc. Li et al. (2021a)  
4-Methoxybenzyl alcohol <1.0 × 107 PR, 11 Alfassi et al. (1988)  
1,4-Dimethoxybenzene 2.1 × 109 PR, 13 Alfassi et al. (1988)  
8.04 × 108 Calc. Li et al. (2021a)  
Ethoxybenzene 2.84 × 106 Calc. Li et al. (2021a)  
2,4,6-Tribromoanisol 4.26 × 104 Calc. Li et al. (2022)  
1-Methoxy-2-Methylbenzene 4.25 × 106 Calc. Li et al. (2021a)  
1,2-Dimethoxybenzene 2.41 × 108 Calc. Li et al. (2021a)  
1,3-Dimethoxybenzene 3.8 × 108 Calc. Li et al. (2021a  
1,2,3-Trimethoxybenzene 4.8 × 109 Calc. Li et al. (2021a)  
1,2,4-Trimethoxybenzene 1.39 × 1010 Calc. Li et al. (2021a)  
1,3,5-Trimethoxybenzene 1.4 × 109 Calc. Li et al. (2021a)  
1,2,3-Trimethoxy-5-methylbenzene 5.47 × 109 Calc. Li et al. (2021a)  
Aniline, 4.63 2.07 × 103 Calc., cation Li et al. (2021a)  
1.11 × 1010 Calc., neutral Li et al. (2021a)  
3.28 × 105 Calc., cation An et al. (2022)  
1.47 × 1010 Calc., neutral An et al. (2022)  
p-Aminophenol, 5.4, 9.9 8.05 × 105 Calc., cation An et al. (2022)  
5.35 × 1010 Calc., anion An et al. (2022)  
N,N-Dimethylaniline, 5.15 1.81 × 1010 Calc. Li et al. (2021a)  
N-Ethylaniline, 5.12 2.66 × 1010 Calc. Li et al. (2021a)  
N-Methylaniline, 4.85 2.49 × 1010 Calc. Li et al. (2021a)  
N-Phenylacetamide 1.8 × 107 Calc. Li et al. (2021a)  
Phenacetin 2.13 × 108 Calc. Li et al. (2021a)  
Phenyl acetate 1.32 × 104 Calc. Li et al. (2021a)  
Acetaminophen (paracetamol), 9.4 3.53 × 109 Comp., 8.5 Giang et al. (2017)  
4.61 × 108 Calc., neutral Li et al. (2021a)  
7.74 × 106 Calc., neutral Wang et al. (2021b)  

Calc., calculated; Est., estimated; Model., modeling; PR, pulse radiolysis; Comp., competitive.

Figure 3

Phenols and anilines.

Figure 3

Phenols and anilines.

Close modal

The calculated kClO• value of 1,4-dimethoxybenzene (8.04 × 108 mol−1 dm3 s−1, Li et al. 2021a) was found to be smaller than the experimental rate constant (2.1 × 109 mol−1 dm3 s−1) of Alfassi et al. (1988). The calculated ClO initiated reaction rate constants of aromatic compounds are in the range of 102–1010 mol−1 dm3 s−1. ClO was found to be highly reactive to phenolates, anilines and alkoxy/hydroxyl aromatic compounds. Upon the deprotonation of phenol to phenolate, the kClO• value increased by four orders of magnitude, from 6.3 × 106–1 × 107 mol−1 dm3 s−1 to 1 × 109–3.71 × 1010 mol−1 dm3 s−1 (Li et al. 2021a; An et al. 2022; Huang & Zhang 2022). (The latter value seems to be unrealistic since it is much higher than the diffusion-limited rate constant of ∼1 × 1010 mol−1 dm3 s−1 (Kovács et al. 2022).) The deprotonation of the phenolic OH resulted in the sudden increase of the rate constant in the reactions of a number of other phenol type compounds as shown in Table 4. E.g., in the case of 2,4,6-tribromophenol kClO• increased from 1.95 × 105 to 3.71 × 1010 mol−1 dm3 s−1 (Li et al. 2022). The kClO• values of alkoxybenzenes are higher for compounds with shorter alkyl side chains and more alkoxy substituents.

Due to the electrophile character of kClO• reactions the calculated rate constants highly increase upon deprotonation of aniline cation. Li et al. (2021a) calculated values of 2.07 × 103 and 1.11 × 1010 mol−1 dm3 s−1 for aniline cation and the neutral molecule, respectively. The calculated values of An et al. (2022) are closer to each other: 3.28 × 105 and 1.47 × 1010 mol−1 dm3 s−1, respectively.

p-Aminophenol has two dissociable places, the amino group and the hydroxyl group. In the pH range between 0 and 14, the ionization state changes in the order: cation, neutral, zwitterion and anion. The calculated rate constants gradually increase with the pH. For p-aminophenol cation and anion, An et al. (2022) calculated kClO• values of 8.05 × 105 and 5.35 × 1010 mol−1 dm3 s−1, respectively, the rate constant of the neutral species lies between the two. Acetaminophen (paracetamol, used as a non-steroidal anti-inflammatory drug, NSAID) is a derivative of p-aminophenol. Giang et al. (2017) by using the competitive technique published kClO• = 3.53 × 109 mol−1 dm3 s−1, while the theoretical calculations of Li et al. (2021a) and Wang et al. (2021b) based on the TST yielded one and three orders of magnitude smaller values: 4.61 × 108 and 7.74 × 106 mol−1 dm3 s−1, respectively. The chemical structure of N-phenacetin (N-(4-ethoxyphenyl)acetamide, also used as NSAID) is similar to that of acetaminophenen. The calculated rate constant values for the two medicines, for the neutral acetaminophen and phenacetin (Li et al. 2021a) are also close to each other.

Benzoic acid and derivatives

In Table 5, the rate constant values for benzoic acids taken from the works of Li et al. (2021a), An et al. (2022) and Peng et al. (2022) were obtained in quantum chemical calculations using the TST. The values of Zhou et al. (2019) were estimated through a complex fitting procedure to the concentration changes of the compound investigated in UV/chlorine process. Only the values of Alfassi et al. (1988) were obtained in direct pulse radiolysis experiments. The latter authors for the kClO• of the benzoate ion gave an upper limit of <3.0 × 106 mol−1 dm3 s−1. The calculated rate constant of An et al. (2022), 8.88 × 104 mol−1 dm3 s−1, and that of Li et al. (2021a), 6.68 × 104 mol−1 dm3 s−1 are also very low. Peng et al. (2022) calculated three orders of magnitude higher value for the anion: 2.32 × 107 mol−1 dm3 s−1. The values given for the neutral molecule, 7.26 × 103 and 3.13 × 103 mol−1 dm3 s−1, published by Li et al. (2021a) and An et al. (2022), respectively, are much smaller than the values for the anion.

Table 5

Benzoic acid and derivatives

Compound, pKakClO•, mol−1 dm3 s−1Method, pHReference
Benzoic acid, 4.2 7.26 × 103 Calc., neutral Li et al. (2021a)  
3.13 × 103 Calc., neutral An et al. (2022)  
<3.0 × 106 PR, 12, anion Alfassi et al. (1988)  
6.68 × 104 Calc., anion Li et al. (2021a)  
2.32 × 107 Calc., 7 Peng et al. (2022)  
8.88 × 104 Calc., anion An et al. (2022)  
Methylbenzoate 1.02 × 104 Calc., anion Li et al. (2021a)  
3-Methylbenzoic acid, 4.27 1.21 × 106 Est., 7.2, anion Zhou et al. (2019)  
4-Fluorobenzoic acid, 4.14 1.27 × 106 Est., 7.2, anion Zhou et al. (2019)  
2-Chlorobenzoic acid, 2.9 8.00 × 105 Est., 7.2, anion Zhou et al. (2019)  
4-Chlorobenzoic acid, 3.98 3.13 × 107 Calc., anion Peng et al. (2022)  
2-Iodobenzoic acid, 2.86 8.82 × 105 Est., 7.2, anion Zhou et al. (2019)  
3-Cyanobenzoic acid, 3.6 8.11 × 105 Est., 7.2, anion Zhou et al. (2019)  
3-Nitrobenzoic acid, 3.4 5.05 × 105 Est., 7.2, anion Zhou et al. (2019)  
p-Hydroxybenzoic acid, 4.38, 9.3 7.05 × 104 Calc., neutral An et al. (2022)  
3.7 × 1010 Calc., dianion An et al. (2022)  
p-Aminobenzoic acid, 2.38, 4.85 2.78 × 105 Calc., cation An et al. (2022)  
7.62 × 109 Calc., anion An et al. (2022)  
2,4,5-Trimethoxybenzoic acid, 4.24 1.1 × 109 PR, 13, anion Alfassi et al. (1988)  
1.62 × 1010 Calc., anion Li et al. (2021a)  
2,5-Dimethoxybenzoic acid, 3.97 7.0 × 108 PR, 13, anion Alfassi et al. (1988)  
4.11 × 109 Calc., anion Li et al. (2021a)  
Compound, pKakClO•, mol−1 dm3 s−1Method, pHReference
Benzoic acid, 4.2 7.26 × 103 Calc., neutral Li et al. (2021a)  
3.13 × 103 Calc., neutral An et al. (2022)  
<3.0 × 106 PR, 12, anion Alfassi et al. (1988)  
6.68 × 104 Calc., anion Li et al. (2021a)  
2.32 × 107 Calc., 7 Peng et al. (2022)  
8.88 × 104 Calc., anion An et al. (2022)  
Methylbenzoate 1.02 × 104 Calc., anion Li et al. (2021a)  
3-Methylbenzoic acid, 4.27 1.21 × 106 Est., 7.2, anion Zhou et al. (2019)  
4-Fluorobenzoic acid, 4.14 1.27 × 106 Est., 7.2, anion Zhou et al. (2019)  
2-Chlorobenzoic acid, 2.9 8.00 × 105 Est., 7.2, anion Zhou et al. (2019)  
4-Chlorobenzoic acid, 3.98 3.13 × 107 Calc., anion Peng et al. (2022)  
2-Iodobenzoic acid, 2.86 8.82 × 105 Est., 7.2, anion Zhou et al. (2019)  
3-Cyanobenzoic acid, 3.6 8.11 × 105 Est., 7.2, anion Zhou et al. (2019)  
3-Nitrobenzoic acid, 3.4 5.05 × 105 Est., 7.2, anion Zhou et al. (2019)  
p-Hydroxybenzoic acid, 4.38, 9.3 7.05 × 104 Calc., neutral An et al. (2022)  
3.7 × 1010 Calc., dianion An et al. (2022)  
p-Aminobenzoic acid, 2.38, 4.85 2.78 × 105 Calc., cation An et al. (2022)  
7.62 × 109 Calc., anion An et al. (2022)  
2,4,5-Trimethoxybenzoic acid, 4.24 1.1 × 109 PR, 13, anion Alfassi et al. (1988)  
1.62 × 1010 Calc., anion Li et al. (2021a)  
2,5-Dimethoxybenzoic acid, 3.97 7.0 × 108 PR, 13, anion Alfassi et al. (1988)  
4.11 × 109 Calc., anion Li et al. (2021a)  

Calc., calculated; PR, pulse radiolysis; Est., estimated.

Both experimentally (pulse radiolysis) determined (1.1 × 109 and 7.0 × 108 mol−1 dm3 s−1, Alfassi et al. 1988) and calculated rate constants (1.62 × 1010 and 4.11 × 109 mol−1 dm3 s−1, Li et al. 2021a) are also available for 2,4,5-trimethoxybenzoate and 2,4-dimethoxybenzoate, respectively (Figure 4). The values obtained by the two methods differ by one order of magnitude. Li et al. (2021a) mentions that the experimental values were obtained with a single technique, and other experimental methods should be used to determine kClO• values. We mention here that often for the same compound, several quantum chemical calculations were carried out in different laboratories, the results usually differ also by at least one order of magnitude.
Figure 4

Benzoic acid and derivatives.

Figure 4

Benzoic acid and derivatives.

Close modal

As the calculated results for p-hydroxybenzoic acid and p-aminobenzoic acid show, similarly to benzoic acid, deprotonation, and thereby the increase of electron density on the benzene ring greatly increases the rate constant. According to the estimations of Zhou et al. (2019) electron donating substituents on the ring of benzoate increase, electron-withdrawing substituents decrease the rate constants.

Li et al. (2021a) mention that ClO reactions likely to play an important role in the UV/chlorine process when kClO• is greater than 106 mol−1 dm3 s−1. The kClO• values of many aromatic compounds were found above this limit: the order was: anilines ≈ phenolate > trimethoxy-benzenes > dimethoxybenzenes > phenylamides > phenol > phenylmethanol > mono-alkoxybenzenes. Among these, the kClO• values of anilines, phenolate, dimethoxy- and trimethoxy-benzenes were greater than 108 mol−1 dm3 s−1.

Pharmaceuticals and related compounds

The synthetic nitroimidazole antibiotics, metronidazole, dimetridazole, ornidazole, ronidazole and tinidazole are used in form of tablets, in creams and in injection (Figure 5). Guo et al. (2018) in competitive experiments for dimetridazole, ornidazole, ronidazole and tinidazole established rate constants in the range 1.37 × 106–1.1 × 107 mol−1 dm3 s−1. Wu et al. (2017) based on competitive experiments for metronidazole gave a value of <1 × 106 mol−1 dm3 s−1 (Table 6). Guo et al. (2018) noticed that ClO prefers to react with electron-rich molecules or electron-rich molecular parts. The natural logarithms of rate constant values of 16 compounds, among them those of nitroimidazoles showed a good correlation with the Hammett σ+ substituent constants: ln kClO• = −3.6 Σ σ+ + 15.4.
Table 6

Pharmaceuticals and related compounds

Compound, pKakClO•, mol−1 dm3 s−1Method, pHReference
Metronidazole, 2.57 <1.0 × 106 Comp., 7 Wu et al. (2017)  
<1.0 × 104 Comp., 7.2 Wang et al. (2022a)  
Dimetridazole 1.1 × 107 Comp., 8.4 Guo et al. (2018)  
Ornidazole 4.12 × 106 Comp., 8.4 Guo et al. (2018)  
Ronidazole 5.49 × 106 Comp., 8.4 Guo et al. (2018)  
Tinidazole 1.37 × 106 Comp., 8.4 Guo et al. (2018)  
Erythromicin, 8.9 3.1 × 109 Comp., 6 Kim et al. (2020)  
3.3 × 109 Comp., 7 Kim et al. (2020)  
7.5 × 109 Comp., 8 Kim et al. (2020)  
1 × 1010 Comp., 9 Kim et al. (2020)  
Trimethoprim, 3.1, 7.1 4.46 × 1010 Pred., 8.4 Guo et al. (2018)  
2.1 × 109  Teo et al. (2022)  
9.2 × 106 Fit., dianion Wang et al. (2021a)  
2.77 × 106 Fit., monoanion 
1.93 × 106 Fit., neutral 
2-Phenylbenzimidazole-5-sulfonic acid, -0,87 1.5 × 105 Comp. 8.4 Yin et al. (2022)  
8.6 × 107 Comp, 7 Hu et al. (2022)  
Sulfamethoxazole, 1.6, 5.7 <2.23 × 109 Comp., 8.4 Guo et al. (2018)  
negligible  Zheng et al. (2022)  
Nalidixic acid, 5.95 <8.9 × 106 Comp., 7 Wu et al. (2017)  
1.79 × 107 Comp., 8.4 Guo et al. (2018)  
Flumenique 2.75 × 107 Comp., 8.4 Guo et al. (2018)  
Chloramphenicol negligible Comp., 8.4 Guo et al. (2018)  
Fluconazole, 2.27 4.0 × 107 Comp., 7 Cai et al. (2020)  
9.48 × 107 Calc. 
Ribavarin 5.58 × 107 Comp., 8.4 Sun et al. (2022)  
Ibuprofen, 4.9 5.49 × 106 Comp., 8.4 Guo et al. (2018)  
Naproxen, 4.2 <5.69 ± 0.36 × 109 Comp., 7 Pan et al. (2018)  
<2.3 × 109 Comp., 8.4 Guo et al. (2018)  
9.24 × 109 Comp. 8.4 Liu et al. (2021)  
Diclofenac, 4.2 3.54 × 108 Pred., 8.4 Guo et al. (2018)  
Caffeine 1.4 × 103 Est. Sun et al. (2016)  
1.03 × 108 Comp, 8.4. Guo et al. (2017)  
5.1 ± 0.2 × 107 Comp., 7 Wu et al. (2017)  
1.31 × 108 Comp., 8.4 Guo et al. (2018)  
1.4 × 109 Calc. Li et al. (2021b)  
Atenolol, 9.5 8.68 × 107 Comp., 8.4 Guo et al. (2018)  
Metoprolol, 9.6 1.34 × 108 Comp., 8.4 Guo et al. (2018)  
Salbutamol, 10.12 1.21 × 108 Pred., 8.4 Guo et al. (2018)  
Ractopamine, 9.4 8.59 × 109 Pred., 8.4 Guo et al. (2018)  
Gemfibrozil, 4.5 4.2 ± 0.3 × 108 Comp., 8.4 Kong et al. (2018b)  
4.16 × 108 Comp., 8.4 Guo et al. (2017)  
4.16 × 108 Comp., 8.4 Guo et al. (2018)  
1.93 × 109 Comp., 8.4 Liu et al. (2021)  
Bezafibrate, 3.83 3.6 ± 0.1 × 107 Comp., 8.4 Kong et al. (2018b)  
5.0 × 108 Model. Shi et al. (2018)  
Clenbuterol <5.0 × 109 Comp., 8.4 Guo et al. (2018)  
Venlafaxine 1.65 × 108 Comp., 8.4 Guo et al. (2018)  
Carbamazepine, 13.9 9.2 × 107 Comp., 8.4 Guo et al. (2017)  
1.97 × 108 Comp., 8.4 Guo et al. (2018)  
1.78 × 106 Fit., 7 Zhu et al. (2021)  
1.21 ± 0.08 × 107 Fit. Zhang et al. (2022)  
Primidone, 12.3 5.51 × 107 Comp., 8.4 Guo et al. (2018)  
1.12 × 106 Simul., 8.4 Wang et al. (2020)  
Iopromide, 9.9 1.25 × 109 Comp., 7 Cha et al. (2022)  
Iopamidol 7.3 × 107 Comp., 10 Luo et al. (2022)  
Compound, pKakClO•, mol−1 dm3 s−1Method, pHReference
Metronidazole, 2.57 <1.0 × 106 Comp., 7 Wu et al. (2017)  
<1.0 × 104 Comp., 7.2 Wang et al. (2022a)  
Dimetridazole 1.1 × 107 Comp., 8.4 Guo et al. (2018)  
Ornidazole 4.12 × 106 Comp., 8.4 Guo et al. (2018)  
Ronidazole 5.49 × 106 Comp., 8.4 Guo et al. (2018)  
Tinidazole 1.37 × 106 Comp., 8.4 Guo et al. (2018)  
Erythromicin, 8.9 3.1 × 109 Comp., 6 Kim et al. (2020)  
3.3 × 109 Comp., 7 Kim et al. (2020)  
7.5 × 109 Comp., 8 Kim et al. (2020)  
1 × 1010 Comp., 9 Kim et al. (2020)  
Trimethoprim, 3.1, 7.1 4.46 × 1010 Pred., 8.4 Guo et al. (2018)  
2.1 × 109  Teo et al. (2022)  
9.2 × 106 Fit., dianion Wang et al. (2021a)  
2.77 × 106 Fit., monoanion 
1.93 × 106 Fit., neutral 
2-Phenylbenzimidazole-5-sulfonic acid, -0,87 1.5 × 105 Comp. 8.4 Yin et al. (2022)  
8.6 × 107 Comp, 7 Hu et al. (2022)  
Sulfamethoxazole, 1.6, 5.7 <2.23 × 109 Comp., 8.4 Guo et al. (2018)  
negligible  Zheng et al. (2022)  
Nalidixic acid, 5.95 <8.9 × 106 Comp., 7 Wu et al. (2017)  
1.79 × 107 Comp., 8.4 Guo et al. (2018)  
Flumenique 2.75 × 107 Comp., 8.4 Guo et al. (2018)  
Chloramphenicol negligible Comp., 8.4 Guo et al. (2018)  
Fluconazole, 2.27 4.0 × 107 Comp., 7 Cai et al. (2020)  
9.48 × 107 Calc. 
Ribavarin 5.58 × 107 Comp., 8.4 Sun et al. (2022)  
Ibuprofen, 4.9 5.49 × 106 Comp., 8.4 Guo et al. (2018)  
Naproxen, 4.2 <5.69 ± 0.36 × 109 Comp., 7 Pan et al. (2018)  
<2.3 × 109 Comp., 8.4 Guo et al. (2018)  
9.24 × 109 Comp. 8.4 Liu et al. (2021)  
Diclofenac, 4.2 3.54 × 108 Pred., 8.4 Guo et al. (2018)  
Caffeine 1.4 × 103 Est. Sun et al. (2016)  
1.03 × 108 Comp, 8.4. Guo et al. (2017)  
5.1 ± 0.2 × 107 Comp., 7 Wu et al. (2017)  
1.31 × 108 Comp., 8.4 Guo et al. (2018)  
1.4 × 109 Calc. Li et al. (2021b)  
Atenolol, 9.5 8.68 × 107 Comp., 8.4 Guo et al. (2018)  
Metoprolol, 9.6 1.34 × 108 Comp., 8.4 Guo et al. (2018)  
Salbutamol, 10.12 1.21 × 108 Pred., 8.4 Guo et al. (2018)  
Ractopamine, 9.4 8.59 × 109 Pred., 8.4 Guo et al. (2018)  
Gemfibrozil, 4.5 4.2 ± 0.3 × 108 Comp., 8.4 Kong et al. (2018b)  
4.16 × 108 Comp., 8.4 Guo et al. (2017)  
4.16 × 108 Comp., 8.4 Guo et al. (2018)  
1.93 × 109 Comp., 8.4 Liu et al. (2021)  
Bezafibrate, 3.83 3.6 ± 0.1 × 107 Comp., 8.4 Kong et al. (2018b)  
5.0 × 108 Model. Shi et al. (2018)  
Clenbuterol <5.0 × 109 Comp., 8.4 Guo et al. (2018)  
Venlafaxine 1.65 × 108 Comp., 8.4 Guo et al. (2018)  
Carbamazepine, 13.9 9.2 × 107 Comp., 8.4 Guo et al. (2017)  
1.97 × 108 Comp., 8.4 Guo et al. (2018)  
1.78 × 106 Fit., 7 Zhu et al. (2021)  
1.21 ± 0.08 × 107 Fit. Zhang et al. (2022)  
Primidone, 12.3 5.51 × 107 Comp., 8.4 Guo et al. (2018)  
1.12 × 106 Simul., 8.4 Wang et al. (2020)  
Iopromide, 9.9 1.25 × 109 Comp., 7 Cha et al. (2022)  
Iopamidol 7.3 × 107 Comp., 10 Luo et al. (2022)  

Comp., competitive; Pred., predicted; Fit., fitting; Calc., calculated; Est., estimated; Model., modeling; Simul., simulating.

Figure 5

Pharmaceuticals and related compounds.

Figure 5

Pharmaceuticals and related compounds.

Close modal

Erythromicin is an often applied macrolide-type antibiotic. Kim et al. (2020) investigated the pH dependence of its reaction with ClO. The rate constant increased in the pH range 6–10 from 3.1 × 109 to 1 × 1010 mol−1 dm3 s−1, due to deprotonation with pKa 8.9. The authors established that in the UV-LED(275 nm)/chlorine process at high pH the Cl and ClO radicals played the key role in the degradation.

Wang et al. (2021a) carried out pH dependence studies on the reaction of trimethoprim. This medicine is often used in combination with sulfa drugs, e.g., sulfamethoxazole or sulfadiazine. At low pH both N-atoms in the heterocyclic ring are protonated, at high pH the neutral form dominates (pKa1 3.1, pKa2 7.1). Under the usual conditions there is a pH determined equilibrium between the dication (Trim2+), the monocation (Trim+) and the neutral forms. From the fitted results of Wang et al. (2021a) it seems that the neutral form has the smallest rate constant, 1.93 × 106 mol−1 dm3 s−1. The rate constant of Guo et al. (2018) predicted for the ClO + trimethoprim reaction, 4.46 × 1010 mol−1 dm3 s−1, is out of the range of rate constants of chlorine monoxide reactions shown in the tables in this paper.

Both 2-phenylbenzimidazole-5-sulfonic acid (PBSA) and sulfamethoxazole are derivatives of sulfonic acid. PBSA as a personal care product (PCP) is used as an organic filter of UV radiation. Therefore, its concentration is often high in swimming pools and recreation waters, it appears also in lakes and rivers. In swimming pools usually, chlorination is used for disinfection. Therefore, under the effect UV light in open-air swimming pools PBSA is attacked by different chlorine radicals, among them ClO. Yin et al. (2022) using competitive experiments published a rate constant of 1.5 × 105 mol−1 dm3 s−1. Based on similar experiments the kClO• value of Hu et al. (2022) is 8.6 × 107 mol−1 dm3 s−1. Considering the rate constants of similar compounds, we tend to believe that the kClO• value of Yin et al. (2022) is closer to reality than the rate constant of Hu et al. For sulfamethoxazole (antibiotic), Guo et al. (2018) calculated an unrealistically high upper limit for the rate constant: <2.23 × 109 mol−1 dm3 s−1. Zheng et al. (2022) suggested that rate constant of sulfamethoxazole is very low; they observed very slow degradation of the target compound when the ClO dominated in the reaction mixture.

Nalidixic acid is a narrow-spectrum antibacterial agent used for treating urinary tract infections. The second-order rate constant of reaction with ClO is published as <8.9 × 106 mol−1 dm3 s−1 (Wu et al. 2017) and 1.79 × 107 mol−1 dm3 s−1 (Guo et al. 2018). The chemical structure of nalidixic acid reminisces that of the fluoroquinolone antibiotics, e.g., that of flumenique. The rate constant of the latter compound was published as 2.75 × 107 mol−1 dm3 s−1 (Guo et al. 2018). Chloramphenicol is effective against a wide variety of microorganisms, but due to serious side-effects in humans, it is usually reserved for the treatment of serious and life-threatening infections (e.g., typhoid fever). It is rather inactive in reaction with ClO due to the electron-withdrawing nitro group and the chlorine atoms in the molecule (Guo et al. 2018).

Fluconazole (medicine used to treat fungal infections) has two triazole rings. Radical addition is suggested as the main reaction of ClO with fluconazole (Cai et al. 2020). The experimentally obtained rate constant is 4.0 × 107 mol−1 dm3 s−1, the value obtained by DFT calculations, 9.48 × 107 mol−1 dm3 s−1 is two times higher than the experimental one. There is another medicine, ribavirin, in Table 6 with a triazole ring. Ribavarin is an antiviral agent that is used, for instance, to treat hepatitis C. The rate constant obtained in competitive experiments (5.58 × 107 mol−1 dm3 s−1, Sun et al. 2022) is close to the value published for fluconazole.

Ibuprofen and naproxen are propionic acid-based non-steroidal anti-inflammatory drugs (NSAIDs). The rate constant of ClO reaction with ibuprofen based on competitive experiments was published as 5.49 × 106 mol−1 dm3 s−1 (Guo et al. 2018). For naproxen, competitive experiments in three laboratories suggest kClO• values in the 109 mol−1 dm3 s−1 order of magnitude range (Guo et al. 2018; Pan et al. 2018; Liu et al. 2021). The three orders of magnitude higher value for naproxen than for ibuprofen is certainly due to the naphthalene unit in the molecule which offers an excellent possibility for electrophile attack. An increase in the rate constant upon replacing benzene with the naphthalene unit caused an increase also in the rate constants of reactions of other one-electron oxidants, e.g., in the reactions of β-blockers (Kovács et al. 2022). Diclofenac is also an NSAID. In the molecule, an amino group connects two aromatic rings. The kClO• value predicted for this medicine (Guo et al. 2018), 3.54 × 108 mol−1 dm3 s−1, is similar to those of rate constants given for compounds with two aromatic rings.

The kClO• value of caffeine reaction with ClO was published in several papers. Actually, caffeine often served as a model compound in investigations of the UV/chlorine process. The published rate constants range from the value estimated based on structure-reactivity relations, 1.4 × 103 mol−1 dm3 s−1 (Sun et al. 2016) to the calculated value (quantum chemistry) of Li et al. (2021b), 1.4 × 109 mol−1 dm3 s−1. The experimentally obtained values are around 1 × 108 mol−1 dm3 s−1 (Guo et al. 2017, 2018; Wu et al. 2017). Theoretical calculations showed that the basic reaction is ClO-adduct formation, just like in the cases of OH and BrO reactions (Li et al. 2021a).

Atenolol, metoprolol, salbutamol and ractopamine as β-blockers are used to treat cardiovascular diseases. These compounds are propionamide derivatives, all containing benzene or naphthalene unit. There are two main vulnerable sites for a radical attack in these molecules, the aromatic ring(s) and the amino group (Kovács et al. 2022). Guo et al. (2018) in competitive experiments determined rate constants of 8.68 × 107 and 1.34 × 108 mol−1 dm3 s−1, respectively, for atenolol and metoprolol. They predicted kClO• values of 1.21 × 108 and 8.59 × 109 mol−1 dm3 s−1 for salbutamol and ractopamine, respectively. The high value of the latter may be rationalized by the two aromatic rings in the molecule. Both rings have electron releasing hydroxyl group in para position.

In the literature, we found four values for the kClO• of gemfibrozil reaction (a medicine used to regulate blood lipid level). All values were established in competitive experiments. The values of Guo et al. (2017, 2018) and Kong et al. (2018b) are ∼ 4.2 × 108 mol−1 dm3 s−1, Liu et al. (2021) published higher value: 1.93 × 109 mol−1 dm3 s−1. Bezafibrate is also used to control lipid levels in the blood. The rate constants published by Kong et al. (2018b) and Shi et al. (2018) differ by one order of magnitude, 3.6 ± 0.1 × 107 and 5.0 × 108 mol−1 dm3 s−1, respectively. Kong et al. (2018b) used competitive experiments, while Shi et al. (2018) applied modeling calculations in the UV/chlorine process.

In clenbuterol (veterinary drug) a similar side chain is attached to the aromatic ring as in salbutamol. There are two chlorine atoms and an amine group in the ring. Guo et al. (2018) gave a surprisingly high upper limit for the rate constant: <5.0 × 109 mol−1 dm3 s−1. Because of the two electron-withdrawing Cl atoms on the ring, we expect a much smaller rate constant. The antidepressant medicine venlafaxine, similar to the β-blockers has also an aromatic ring and in the side chain a tertiary amine group. The rate constant is in the 108 mol−1 dm3 s−1 order of magnitude range as those of the β-blockers (Guo et al. 2018).

Carbamazepine is used as an anticonvulsant or anti-epileptic drug. Guo et al. (2017, 2018) in two papers published two different rate constants based on competitive experiments, although the values are not very far from each other, 9.7 × 107 and 1.97 × 108 mol−1 dm3 s−1. The value of Zhu et al. (2021) obtained in UV/chlorine experiments, by using complex fitting procedure, 1.78 × 106 mol−1 dm3 s−1, is two orders of magnitude smaller than the values of Guo et al. (2017, 2018). Primidone in the medical practice is also used to treat epilepsy. Guo et al. (2018) in competitive experiments determined a value of 5.51 × 107 mol−1 dm3 s−1, while Wang et al. (2020) in simulation experiments estimated an order of magnitude smaller rate constant, 1.12 × 106 mol−1 dm3 s−1.

Iopromide and iopamidol have similar structures, in both of them there is a central benzene ring with three iodine atoms. Due to the iodine heavy atoms, they are used as X-ray contrast media in organ imaging. Their kClO• values were established in competitive experiments and they differ by a factor of 17: 1.25 × 109 and 7.3 × 107 mol−1 dm3 s−1, respectively (Cha et al. 2022; Luo et al. 2022). It is hard to say the reason for this large difference, in spite of the similar structure. The different pH values applied during the measurements (pH 7 and 10) may influence kClO•. In UV/chlorine degradation of both contrast materials ClO reaction has the dominant role (Kong et al. 2018a).

Miscellaneous compounds

Synthetic musks are chemicals that are used in many cosmetic products, among others in deodorants and detergents (Table 7, Figure 6). Some of them show toxic effects in the aquatic environment. We found experimentally determined rate constant value only for acetyl hexamethyl tetralin (AHTN, called also musk tonalide). The value determined in the competitive experiments of Wang & Liu (2019), 6.3 × 109 mol−1 dm3 s−1, is higher than the value, 1.1 × 107 mol−1 dm3 s−1, predicted for this compound and the other synthetic aromatic musks (HHCB, ADBI, ATII, AHMI, MK, 4.6 × 104–6.8 × 107 mol−1 dm3 s−1, Table 7) by Lee et al. (2022) based on the QSAR equation of Guo et al. (2018) for ClO reactions (kClO• = −3.5 Σ σ+ + 15.4). For the three olefinic musks in Table 7 (OTNE, ABMT, DPMI), Lee et al. (2022) assumed 2.5 × 107 mol−1 dm3 s−1 based on the reactivity of ClO toward olefin compounds (CBDs) observed by Kong et al. (2020a). ClO is suggested to have a determining role in the degradation of synthetic musks in the UV/Chlorine process. Geosmin, a natural fragrance, is a bicyclic alcohol, a derivative of decalin. It gives the taste and odour of drinking water. The compound has low reactivity with all chlorine radicals (Fang et al. 2018).
Table 7

Miscellaneous compounds

Compound, pKakClO•, mol−1 dm3 s−1Method, pHReference
Acetyl hexamethyl tetralin (AHTN) 6.3 × 109 Comp. 8.4 Wang & Liu (2019)  
1.1 × 107 Pred. Lee et al. (2022)  
Hexahydro hexamethyl cyclopentabenzopyran (HHCB) 6.8 × 107 Pred. Lee et al. (2022)  
Acetyl dimethyl tert-butyl indane (ADBI) 9.8 × 106 Pred. Lee et al. (2022)  
Acetyl tetramethyl isopropyl indane (ATII) 1.2 × 107 Pred. Lee et al. (2022)  
Acetyl hexamethyl indane (AHMI) 1.1 × 107 Pred. Lee et al. (2022)  
Musk ketone (MK) 4.6 × 104 Pred. Lee et al. (2022)  
Octahydro tetramethyl naphthalenyl ethanone (OTNE) 2.5 × 107 Assum. Lee et al. (2022)  
Ambrettolide (AMBT) 2.5 × 107 Assum. Lee et al. (2022)  
Dihydro pentamethyl indanone (DPMI) 2.5 × 107 Assum. Lee et al. (2022)  
Geosmin Negligible  Fang et al. (2018)  
Clothianidin, 11.09 7.3 ± 0.1 × 109 Comp., 8.4 Lee et al. (2021)  
Benzotriazole, 8.3 2.4 × 108 Model., 7 Yang et al. (2021)  
1.46 ± 0.09 × 108 Comp., 8.4 Choo et al. (2022)  
1.93 ± 0.12 × 108 Comp., 8.65 
2.1 ± 0.1 × 108 Comp., 8.8 
Benzothiazole, 2.28 2.22 × 108 Model., 7 Yang et al. (2021)  
Diethyltoluamide (DEET) <1.0 × 106 Comp., 7 Wu et al. (2017)  
Mecoprop 1.11 × 108 Comp., 7 Kong et al. (2020b)  
Atrazine <1 × 106 Comp. Kong et al. (2020b)  
Negligible  Ye et al. (2021)  
NOM 4.5 × 104 mgC−1 dm3 s−1 Model., 8.4 Guo et al. (2017)  
Compound, pKakClO•, mol−1 dm3 s−1Method, pHReference
Acetyl hexamethyl tetralin (AHTN) 6.3 × 109 Comp. 8.4 Wang & Liu (2019)  
1.1 × 107 Pred. Lee et al. (2022)  
Hexahydro hexamethyl cyclopentabenzopyran (HHCB) 6.8 × 107 Pred. Lee et al. (2022)  
Acetyl dimethyl tert-butyl indane (ADBI) 9.8 × 106 Pred. Lee et al. (2022)  
Acetyl tetramethyl isopropyl indane (ATII) 1.2 × 107 Pred. Lee et al. (2022)  
Acetyl hexamethyl indane (AHMI) 1.1 × 107 Pred. Lee et al. (2022)  
Musk ketone (MK) 4.6 × 104 Pred. Lee et al. (2022)  
Octahydro tetramethyl naphthalenyl ethanone (OTNE) 2.5 × 107 Assum. Lee et al. (2022)  
Ambrettolide (AMBT) 2.5 × 107 Assum. Lee et al. (2022)  
Dihydro pentamethyl indanone (DPMI) 2.5 × 107 Assum. Lee et al. (2022)  
Geosmin Negligible  Fang et al. (2018)  
Clothianidin, 11.09 7.3 ± 0.1 × 109 Comp., 8.4 Lee et al. (2021)  
Benzotriazole, 8.3 2.4 × 108 Model., 7 Yang et al. (2021)  
1.46 ± 0.09 × 108 Comp., 8.4 Choo et al. (2022)  
1.93 ± 0.12 × 108 Comp., 8.65 
2.1 ± 0.1 × 108 Comp., 8.8 
Benzothiazole, 2.28 2.22 × 108 Model., 7 Yang et al. (2021)  
Diethyltoluamide (DEET) <1.0 × 106 Comp., 7 Wu et al. (2017)  
Mecoprop 1.11 × 108 Comp., 7 Kong et al. (2020b)  
Atrazine <1 × 106 Comp. Kong et al. (2020b)  
Negligible  Ye et al. (2021)  
NOM 4.5 × 104 mgC−1 dm3 s−1 Model., 8.4 Guo et al. (2017)  

Comp., competitive; Pred., predicted; Assum., assumed; Model., modeling.

Figure 6

Miscellaneous compounds.

Figure 6

Miscellaneous compounds.

Close modal

Clothianidin (used as insecticide) contains a 5-member thiazole ring. The rate constant established in competitive experiments seems to be overestimated: 7.3 ± 0.1 × 109 mol−1 dm3 s−1 (Lee et al. 2021). It is 4.3 times higher than the rate constant of OH reaction: 1.7 ± 0.2 × 109 mol−1 dm3 s−1. ClO is suggested to attack the C-atom on the C = N moiety to substitute the nitroamino moiety of the urea compound. Benzothiazoles and benzotriazoles have also 5-member haterocyclic rings. They are widely applied in various consumer and industrial products, e.g., as vulcanization additives in rubber industry or as corrosion inhibitors. Yang et al. (2021) using radical scavengers in the UV/chlorine process derived similar second-order rate constants for the ClO reaction of benzothiazole and benzotriazole: 2.22 × 108 and 2.4 × 108 mol−1 dm3 s−1, respectively. Choo et al. (2022) measured an increase in the rate constant for benzotriazole from 1.46 ± 0.09 × 108 to 2.1 ± 0.1 × 108 mol−1 dm3 s−1 as the pH increased from 8.4 to 8.8, the pKa is at 8.3. These kClO• values are much smaller than the rate constant published for clothianidin (Lee et al. 2021).

N,N-Diethyl-meta-toluamide (DEET) is used as an insect repellent. It is rather inert in reaction with ClO: kClO• <1.0 × 106 mol−1 dm3 s−1 (Wu et al. 2017). The chlorophenoxy type herbicide mecoprop is widely used even now for weed control, while the other herbicide atrazine, often used in the past, is banned in many countries. In the UV/chlorine process, mecoprop decomposes to a large extent in ClO reactions (kClO• = 1.11 × 108 mol−1 dm3 s−1, Kong et al. 2020b). At the same time, atrazine is rather unreactive in reaction with this radical (<106 mol−1 dm3 s−1 (Kong et al. 2020b; Ye et al. 2021)). Contrary to this statement, in the bisulfite/chlorine dioxide system ClOand SO4•− were suggested as the main radical intermediates that destroy atrazine (Wang et al. 2022b).

Dissolved organic matter (DOM) or with other name natural organic matter (NOM) is a complex mixture of organic compounds with different structures. Fulvic and humic acids are the dominant DOM fractions in natural waters. Due to the undefined composition, the rate constants are generally given in mgC−1 dm3 s−1 units. Of course, the rate constant strongly depends on the source: in the literature, there are many values for DOM of different origins (e.g., Yuan et al. 2022). Here we mention only the value of Guo et al. (2017), 4.5 × 104 mgC−1 dm3 s−1, which is often used in modeling studies.

Rate constants of ClO reactions were collected from the literature and were discussed together with the methods of determination and the reaction mechanisms. Only a small fraction of these rate constants was determined by the absolute method, pulse radiolysis combined with kinetic spectroscopy. The major part was determined by competitive techniques. In another group of experiments, the rate constants were derived in rather complex reaction systems using simulations/modeling or fitting procedures and often involving radical scavenging experiments in the determinations. Quantum chemical calculations were also frequently used to determine ClO rate constants. The latter methods often gave unrealistic rate constant values. Much fewer rate constants are available in the literature on the reaction of ClO with organic molecules as on the reactions of other main radical intermediates of the UV/chlorine process, Cl, OH and Cl2•−.

For most compounds, we found only one published rate constant value. Therefore, we had little possibility to compare the values obtained in different laboratories, eventually employing different techniques. In cases when several rate constant values were published, we often observed large differences between the values obtained from different sources. The calculated values span a very large range from 102 to 1010 mol−1 dm3 s−1. The experimentally obtained ones are between 105 and 1010 mol−1 dm3 s−1. With very few exceptions, the experimental values are well below 1 × 1010 mol−1 dm3 s−1. The latter value is considered to be the diffusion-controlled limit for ClO (Kovács et al. 2022). Therefore, the reaction rate constants are determined by the chemical reactivity, and diffusion limitation has little role. We know very little about the nature of chemical reactions. This is due to the small number of pulsed radiolysis investigations. The transient identification may give direct indications about the reaction mechanism. However, it seems that a basic mechanism is a radical addition to the double bonds (aromatic rings) of organic molecules. In some cases, evidence was given also for SET reaction. There are no direct indications for the participation of H-atom abstraction. The structure dependence of the rate constant values clearly shows an electrophile character similar to the other three radicals playing a major role in the UV/chlorine process. In reactions of phenols, benzoic acids, and anilines, the reactivity strongly increases with deprotonation, i.e. with the increase of electron density on the rings.

Since ClO reactions play a very important role in the emerging UV/chlorine technology, some standardization of the rate constant measuring techniques and more kClO• measurements are needed.

This work was supported by the National Office for Research and Development through the Hungarian-Chinese Industrial Research and Development Cooperation Project (No. 2017-2.3.6.-TÉT-CN-2018-00003).

All relevant data are included in the paper or its Supplementary Information.

The authors declare there is no conflict.

Alfassi
Z. B.
&
Schuler
R. H.
1985
Reaction of azide radicals with aromatic compounds. Azide as a selective oxidant
.
Journal of Physical Chemistry
89
,
3359
3363
.
https://doi.org/10.1021/j100261a040.
Alfassi
Z. B.
,
Huie
R. E.
,
Mosseri
S.
&
Neta
P.
1988
Kinetics of one-electron oxidation by the ClO radical
.
Radiation Physics and Chemistry
32
,
85
88
.
https://doi.org/10.1021/j100298a031.
An
Z.
,
Li
M.
,
Huo
Y.
,
Jiang
J.
,
Zhou
Y.
,
Jin
Z.
,
Xie
J.
,
Zhan
J.
&
He
M.
2022
The pH-dependent contributions of radical species during the removal of aromatic acids and bases in light/chlorine systems
.
Chemical Engineering Journal
433
,
133493
.
https://doi.org/10.1016/j.cej.2021.133493.
Armstrong
D. E.
,
Huie
R. E.
,
Koppenol
W. H.
,
Lymar
S. V.
,
Merényi
G.
,
Neta
P.
,
Ruscic
B.
,
Stanbury
D. M.
,
Steenken
S.
&
Wardman
P.
2015
Standard electrode potentials involving radicals in aqueous solution: inorganic radicals (IUPAC technical report)
.
Pure and Applied Chemistry
87
,
1139
1150
.
https://doi.org/10.1515/pac-2014-0502.
Babic
B.
,
Horvat
A. J. M.
,
Pavlovic
D. M.
&
Kastelan-Macan
M.
2007
Determination of pKa values of active pharmaceutical ingredients
.
Trends in Analytical Chemistry
26
,
1043
1061
.
https://doi.org/10.1016/j.trac.2007.09.004.
Buxton
G. V.
,
Bydder
M.
&
Salmon
G. A.
1988
Reactivity of chlorine atoms in aqueous solution part 1. The equilibrium Cl + Cl ↔ Cl2•-
.
Journal of the Chemical Society, Faraday Transactions
94
,
653
657
.
https://doi.org/10.1039/A707377A.
Cai
W.-W.
,
Peng
T.
,
Yang
B.
,
Xu
C.
,
Liu
S.
,
Zhao
J.-L.
,
Gu
F.-L.
&
Ying
G.-G.
2020
Kinetics and mechanism of reactive radical mediated fluconazole degradation by the UV/chlorine process: experimental and theoretical studies
.
Chemical Engineering Journal
402
,
126224
.
https://doi.org/10.1016/j.cej.2020.126224
.
Cha
Y.
,
Kim
T.-K.
,
Lee
J.
,
Kim
T.
,
Hong
A.-J.
&
Zoh
K.-D.
2022
Degradation of iopromide during the UV-LED/chlorine reaction: effect of wavelength, radical contribution, transformation products, and toxicity
.
Journal of Hazardous Materials
437
,
129371
.
https://doi.org/10.1016/j.jhazmat.2022.129371
.
Choo
Z.-S.
,
Hsieh
M.-C.
,
Lin
H. H.-H.
,
Yang
J.-S.
&
Lin
A. Y.-C.
2022
Reactive chlorine species in the enhanced degradation of UV stabilizers during the sunlight/free chlorine process
.
Chemosphere
309
(
Pt 1
),
136677
.
https://doi.org/10.1016/j.chemosphere.2022.136677
.
De Laat
J.
&
Stefan
M.
,
2018
UV/Chlorine process
. In:
Advanced Oxidation Processes for Water Treatment, Fundamentals and Application
(
Stefan
M. I.
ed.).
IWA Publishing
,
London, UK
.
Fang
J.
,
Liu
J.
,
Shang
C.
&
Fan
C.
2018
Degradation investigation of selected taste and odor compounds by a UV/Chlorine advanced oxidation process
.
International Journal of Environmental Research and Public Health
15
(
2
),
284
.
https://doi.org/10.3390/ijerph15020284.
Giang
L. T.
,
Phuong
D. T.
,
Thuy
Q. C.
&
Yen
D. H.
2017
The contribution of free radicals in paracetamol degradation by UV/NaClO
.
Vietnam Journal of Chemistry, International Edition
55
,
720
723
.
https://doi.org/10.15625/2525-2321.2017-00532.
Guo
K.
,
Wu
Z.
,
Shang
C.
,
Yao
B.
,
Hou
S.
,
Yang
X.
,
Song
W.
&
Fang
J.
2017
Radical chemistry and structural relationships of PPCP degradation by UV/chlorine treatment
.
Environmental Science and Technology
51
,
10431
10439
.
https://doi.org/10.1021/acs.est.7b02059.
Guo
K.
,
Wu
Z.
,
Yan
S.
,
Yao
B.
,
Song
W.
,
Hua
Z.
,
Zhang
X.
,
Kong
X.
,
Li
X.
&
Fang
J.
2018
Comparison of the UV/chlorine and UV/H2O2 processes in the degradation of PPCPs in simulated drinking water and wastewater: kinetics, radical mechanism and energy requirements
.
Water Research
147
,
184
194
.
https://doi.org/10.1016/j.watres.2018.08.048.
Hu
C.
,
Xiong
C.
,
Lin
Y.-L.
,
Zhu
Y.
,
Wang
Q.
,
Xu
L.
&
Huang
D.
2022
Degradation of 2-phenylbenzimidazole 5-sulfonic acid by UV/chlorine advanced oxidation technology: kinetic model, degradation byproducts and reaction pathways
.
Journal of Hazardous Materials
431
,
128574
.
https://doi.org/10.1016/j.jhazmat.2022.128574.
Huie
R. E.
,
Clifton
C. L.
&
Neta
P.
1991
Electron transfer reaction rates and equilibria of the carbonate and sulfate radical anions
.
Radiation Physics and Chemistry
38
,
477
481
.
https://doi.org/10.1016/1359-0197(91)90065-A
.
Klaening
U. K.
,
Sehested
K.
&
Wolff
T.
1984
Ozone formation in laser flash photolysis of oxoacids and oxoanions of chlorine and bromine
.
Journal of the Chemical Society, Faraday Transactions
1
(
80
),
2969
2979
.
https://doi.org/10.1039/F19848002969.
Kong
X.
,
Jiang
J.
,
Ma
J.
,
Yang
Y.
&
Pang
S.
2018a
Comparative investigation of X-ray contrast medium degradation by UV/chlorine and UV/H2O2
.
Chemosphere
193
,
655
663
.
https://doi.org/10.1016/j.chemosphere.2017.11.064.
Kong
X.
,
Wu
Z.
,
Ren
Z.
,
Guo
K.
,
Hou
S.
,
Hua
Z.
,
Li
X.
&
Fang
J.
2018b
Degradation of lipid regulators by the UV/chlorine process: radical mechanisms, chlorine oxide radical (ClO•)-mediated transformation pathways and toxicity changes
.
Water Research
137
,
242
250
.
https://doi.org/10.1016/j.watres.2018.03.004.
Kong
Q.
,
Lei
X.
,
Zhang
X.
,
Cheng
S.
,
Xu
C.
,
Yang
B.
&
Yang
X.
2020a
The role of chlorine oxide radical (ClO) in the degradation of polychoro-1,3-butadienes in UV/chlorine treatment: kinetics and mechanisms
.
Water Research
183
,
116056
.
https://doi.org/10.1016/j.watres.2020.116056
.
Kong
X.
,
Wang
L.
,
Wu
Z.
,
Zeng
F.
,
Sun
H.
,
Guo
K.
,
Hua
Z.
&
Fang
J.
2020b
Solar irradiation combined with chlorine can detoxify herbicides
.
Water Research
177
,
115784
.
https://doi.org/10.1016/j.watres.2020.115784.
Kovács
K.
,
Tóth
T.
&
Wojnárovits
L.
2022
Evaluation of advanced oxidation processes for ß-blockers degradation: a review
.
Water Science and Technology
85
,
685
705
.
https://doi.org/10.2166/wst.2021.631.
Lee
Y.-J.
,
Lee
C.-G.
,
Park
J.-J.
,
Moon
J.-K.
&
Alvarez
P. J. J.
2021
pH-dependent contribution of chlorine monoxide radicals and byproducts formation during UV/chlorine treatment on clothianidin
.
Chemical Engineering Journal
428
,
132444
.
https://doi.org/10.1016/j.cej.2021.132444
.
Lee
W.
,
Shin
J.
,
Lee
M.
,
Choi
Y.
,
Son
H.
&
Lee
Y.
2022
Elimination efficiency of synthetic musks during the treatment of drinking water with ozonation and UV-based advanced oxidation processes
.
Science of the Total Environment
844
,
156915
.
https://doi.org/10.1016/j.scitotenv.2022.156915
.
Li
M.
,
Mei
Q.
,
Wei
B.
,
An
Z.
,
Sun
J.
,
Xie
J.
&
He
M.
2021a
Mechanism and kinetics of ClO•-mediated degradation of aromatic compounds in aqueous solution: dFT and QSAR studies
.
Chemical Engineering Journal
412
,
128728
.
https://doi.org/10.1016/j.cej.2021.128728
.
Li
M.
,
Mei
Q.
,
Han
D.
,
Wei
B.
,
An
Z.
,
Cao
H.
,
Xie
J.
&
He
M.
2021b
The roles of HO•, ClO• and BrO• radicals in caffeine degradation: a theoretical study
.
Science of the Total Environment
768
,
144733
.
https://doi.org/10.1016/j.scitotenv.2020.144733.
Li
M.
,
An
Z.
,
Huo
Y.
,
Jiang
J.
,
Zhou
Y.
,
Cao
H.
&
He
M.
2022
Simulation degradation of bromophenolic compounds in chlorine-based advanced oxidation processes: mechanism, microscopic and apparent kinetics, and toxicity assessment
.
Chemosphere
291
,
133034
.
https://doi.org/10.1016/j.chemosphere.2021.133034.
Liu
H.
,
Hou
Z.
,
Li
Y.
,
Lei
Y.
,
Xu
Z.
,
Gu
J.
&
Tian
S.
2021
Modeling degradation kinetics of gemfibrozil and naproxen in the UV/chlorine system: roles of reactive species and effects of water matrix
.
Water Research
202
,
117445
.
https://doi.org/10.1016/j.watres.2021.117445.
Luo
C.
,
Li
M.
,
Cheng
X.
,
Wu
D.
,
Tan
F.
,
Li
Z.
,
Chen
Y.
,
Yu
F.
&
Ma
Q.
2022
Degradation of iopamidol by UV365/NaClO: roles of reactive species, degradation mechanism, and toxicology
.
Water Research
222
,
118840
.
https://doi.org/10.1016/j.watres.2022.118840
.
Mertens
R.
&
von Sonntag
C. V.
1995
Photolysis ((=354nm) of tetrachloroethylene in aqueous solution
.
Journal of Photochemistry and Photobiology A: Chemistry
85
,
1
9
.
https://doi.org/10.1016/1010-6030(94)03903-8
.
Neta
P.
,
Huie
R. E.
&
Ross
A. B.
1988
Rate constants of the reactions of inorganic radicals in aqueous solution
.
Journal of Physics and Chemistry Reference Data
17
,
1027
1079
.
https://doi.org/10.1063/1.555808
.
Pan
M.
,
Wu
Z.
,
Tang
C.
,
Guo
K.
,
Cao
Y.
&
Fang
J.
2018
Emerging investigators series: comparative study of naproxen degradation by the UV/chlorine and the UV/H2O2 advanced oxidation processes
.
Environmental Science: Water Research and Technology
4
,
1219
1230
.
https://doi.org/10.1039/C8EW00105G.
Peng
T.
,
Xu
C.
,
Yang
L.
,
Yang
B.
,
Cai
W.-W.
,
Gu
F.
&
Ying
G.-G.
2022
Kinetics and mechanism of degradation of reactive radical-mediated probe compounds by the UV/Chlorine process: theoretical calculation and experimental verification
.
ACS Omega
7
(
6
),
5053
5063
.
https://doi.org/10.1021/acsomega.1c06001
.
Perrin
D. D.
1965
Dissociation Constants of Organic Bases in Aqueous Solution
.
Butterworth
,
London, UK
.
Quiroga
S. L.
&
Perissinotti
L. J.
2005
Reduced mechanism for the 366 nm chlorine dioxide photodecomposition in N2-saturated aqueous solutions
.
Journal of Photochemistry and Photobiology A Chemistry
171
,
59
67
.
https://doi.org/10.1016/j.jphotochem.2004.09.006.
Shalaeva
M.
,
Kenseth
J.
,
Lombardo
F.
&
Bastin
A.
2008
Measurement of dissociation constants (pKa values) of organic compounds by multiplexed capillary electrophoresis using aqueous and cosolvent buffers
.
Journal of Pharmacological Sciences
97
,
2581
2606
.
https://doi.org/10.1002/jps.21287.
Shi
X. T.
,
Liu
Y. Z.
,
Tang
Y. Q.
,
Feng
L.
&
Zhang
L. Q.
2018
Kinetics and pathways of bezafibrate degradation in UV/chlorine process
.
Environmental Science and Pollution Research International
25
,
672
682
.
https://doi.org/10.1007/s11356-017-0461-9.
Shruti Salil
T.
2018
UV/Chlorine Advanced Oxidation Processes: Factors Influencing P-Cresol Transformation Kinetics
.
Electronic Thesis
,
University of Arizona
, Tucson, AZ, USA. http://hdl.handle.net/10150/628152
Accessed 12 October 2022
.
Sun
P.
,
Lee
W.-N.
,
Zhang
R.
&
Huang
C.-H.
2016
Degradation of DEET and caffeine under UV/chlorine and simulated sunlight/chlorine conditions
.
Environmental Science and Technology
50
,
13265
13273
.
https://doi.org/10.1021/acs.est.6b02287
.
Sun
Q.
,
Yang
J.
,
Fan
Y.
,
Cai
K.
,
Lu
Z.
,
He
Z.
,
Xu
Z.
,
Lai
X.
,
Zheng
Y.
,
Liu
F.
,
Wang
F.
&
Sun
Z.
2022
The role of trace N-Oxyl compounds as redox mediator in enhancing antiviral ribavirin elimination in UV/Chlorine process
.
Applied Catalysis B: Environmental
317
,
121709
.
https://doi.org/10.1016/j.apcatb.2022.121709.
Teo
Y. S.
,
Jafari
I.
,
Liang
F.
,
Jung
Y.
,
Van der Hoek
J. P.
,
Ong
S.
&
Hu
J.
2022
Investigation of the efficacy of the UV/Chlorine process for the removal of trimethoprim: effects of operational parameters and artificial neural networks modelling
.
Science of the Total Environment
812
,
152551
.
https://doi.org/10.1016/j.scitotenv.2021.152551
.
Wang
L.
&
Liu
X.
2019
Degradation of aqueous polycyclic musk tonalide by ultraviolet-activated free chlorine
.
Processes
7
(
2
),
95
.
https://doi.org/10.3390/pr7020095
.
Wang
Y.
,
Couet
M.
,
Gutierrez
L.
,
Allard
S.
&
Croué
J.-P.
2020
Impact of DOM source and character on the degradation of primidone by UV/chlorine: reaction kinetics and disinfection by-product formation
.
Water Research
172
,
115463
.
https://doi.org/10.1016/j.watres.2019.115463.
Wang
B.
,
Zhang
Q.
,
Fu
Y.
,
Ran
Z.
,
Crittenden
J. C.
,
Zhang
W.
&
Wang
H.
2021a
Degradation of trimethoprim using the UV/Free chlorine process: influencing factors and optimal operating conditions
.
Water
13
,
1656
.
https://doi.org/10.3390/w13121656
.
Wang
P.
,
Bu
L.
,
Wu
Y.
,
Deng
J.
&
Zhou
S.
2021b
Mechanistic insight into paracetamol transformation in UV/NH2Cl process: experimental and theoretical study
.
Water Research
194
,
116938
.
https://doi.org/10.1016/j.watres.2021.116938
.
Wang
Z.
,
Li
J.
,
Song
W.
,
Ma
R.
,
Yang
J.
,
Zhang
X.
,
Huang
F.
&
Dong
W.
2022b
Rapid degradation of atrazine by a novel advanced oxidation process of bisulfite/chlorine dioxide: efficiency, mechanism, pathway
.
Chemical Engineering Journal
445
,
136558
.
https://doi.org/10.1016/j.cej.2022.136558.
Wojnárovits
L.
&
Takács
E.
2021
Rate constants of dichloride radical anion reactions with molecules of environmental interest in aqueous solution, a review
.
Environmental Science and Pollution Research
28
,
41552
44157
.
https://doi.org/10.1007/s11356-021-14453-w.
Wojnárovits
L.
&
Takács
E.
2022
Rate constants of chlorine atom reactions with organic molecules in aqueous solutions, an overview
.
Environmental Science and Pollution Research
29
,
55492
55513
.
https://doi.org/10.1007/s11356-022-20807-9.
Wu
Z.
,
Guo
K.
,
Fang
J.
,
Yang
X.
,
Xiao
H.
,
Hou
S.
,
Kong
X.
,
Shang
C.
,
Yang
X.
,
Meng
F.
&
Chen
L.
2017
Factors affecting the roles of reactive species in the degradation of micropollutants by the UV/chlorine process
.
Water Research
126
,
351
360
.
https://doi.org/10.1016/j.watres.2017.09.028.
Yang
T.
,
Mai
J.
,
Wu
S.
,
Liu
C.
,
Tang
L.
,
Mo
Z.
,
Zhang
M.
,
Guo
L.
,
Liu
M.
&
Ma
J.
2021
UV/chlorine process for degradation of benzothiazole and benzotriazole in water: efficiency, mechanism and toxicity evaluation
.
Science of the Total Environment
760
,
144304
.
https://doi.org/10.1016/j.scitotenv.2020.144304
.
Ye
B.
,
Liu
Z.
,
Zhu
X.
,
Wu
H.
,
Liang
Z.
,
Wang
W.
,
Wu
Q.
,
Hu
H.
&
Zhang
X.
2021
Degradation of atrazine (ATZ) by ammonia/chlorine synergistic oxidation process
.
Chemical Engineering Journal
415
,
128841
.
https://doi.org/10.1016/j.cej.2021.128841
.
Yin
K.
,
Li
T.
,
Zhang
T.
,
Zhang
Y.
,
Yang
C.
&
Luo
S.
2022
Degradation of organic filter 2-Phenylbenzidazole-5-Sulfonic acid by light-driven free chlorine process: reactive species and mechanisms
.
Chemical Engineering Journal
430
,
132684
.
https://doi.org/10.1016/j.cej.2021.132684.
Yuan
D.
,
Liu
G.
,
Qi
F.
,
Wang
J.
,
Kou
Y.
,
Cui
Y.
,
Bai
M.
&
Li
X.
2022
Kinetic study on degradation of micro-organics by different UV-based advanced oxidation processes in EfOM matrix
.
Environmental Science and Pollution Research
29
,
45314
45327
.
https://doi.org/10.1007/s11356-022-19087-0.
Zhang
H.
,
Li
Z.
,
Zhou
X.
,
Lu
X.
,
Gu
H.
&
Ma
J.
2022
Insight into the performance of UV/chlorine/TiO2 on carbamazepine degradation: the crucial role of chlorine oxide radical (ClO)
.
Science of the Total Environment
853
,
158345
.
https://doi.org/10.1016/j.scitotenv.2022.158345
.
Zheng
W.
,
Zhu
L.
,
Liang
S.
,
Ye
J.
,
Yang
X.
,
Lei
Z.
,
Yan
Z.
,
Li
Y.
,
Wei
C.
&
Feng
C.
2020
Discovering the importance of ClO in a coupled electrochemical system for the simultaneous removal of carbon and nitrogen from secondary coking wastewater effluent
.
Environmental Science and Technology
54
,
9015
9024
.
https://doi.org/10.1021/acs.est.9b07704
.
Zheng
Y.
,
Xie
H.
,
Sun
B.
,
Zhang
J.
&
Wang
W.
2022
The altered effects of chloride on the treatment efficiency of SO4·−-based AOPs by other background water constituents
.
Chemical Engineering Journal
441
,
135914
.
https://doi.org/10.1016/j.cej.2022.135914.
Zhou
S.
,
Zhang
W.
,
Sun
J.
,
Zhu
S.
,
Li
K.
,
Meng
X.
,
Luo
J.
,
Shi
Z.
,
Zhou
D.
&
Crittenden
J. C.
2019
Oxidation mechanisms of the UV/free chlorine process: kinetic modelling and quantitative activity relationships
.
Environmental Science and Technology
53
,
4335
4345
.
https://doi.org/10.1021/acs.est.8b06896
.
Zhu
S.
,
Tian
Z.
,
Wang
P.
,
Zhang
W.
,
Bu
L.
,
Wu
Y.
,
Dong
B.
&
Zhou
S.
2021
The role of carbonate radicals on the kinetics, radical chemistry, and energy requirement of UV/chlorine and UV/H2O2 processes
.
Chemosphere
278
,
130499
.
https://doi.org/10.1016/j.chemosphere.2021.130499.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY-NC-ND 4.0), which permits copying and redistribution for non-commercial purposes with no derivatives, provided the original work is properly cited (http://creativecommons.org/licenses/by-nc-nd/4.0/).