With the focus on limiting greenhouse gas emissions, microalgae-based technology is a promising approach for wastewater treatment, combining cost-effective operation, nutrient recovery, and assimilation of CO2. In addition, membrane technology supports process intensification and wastewater reclamation. Based on a bibliometric analysis, this paper evaluated the literature on membrane photobioreactors to highlight promising areas for future research. Specifically, efforts should be made on advancing knowledge of interactions between algae and bacteria, analysing different strategies for membrane fouling control and determining the conditions for the most cost-effective operation. The Scopus® database was used to select documents from 2000 to 2022. A set of 126 documents were found. China is the country with the highest number of publications, whereas the most productive researchers belong to the Universitat Politècnica de València (Spain). The analysis of 50 selected articles provides a summary of the main parameters investigated, that focus in increasing the biomass productivity and nutrient removal. In addition, microalgal-bacterial membrane photobioreactor seems to have the greatest commercialisation potential. S-curve fitting confirms that this technology is still in its growth stage.

  • Research trends in MPBR technology were analysed from 126 indexed publications.

  • The growth of MPBR technology is mainly driven by the higher biomass productivity and nutrient removal capability when using different types of wastewater.

  • A limited number of studies have assessed long-term fouling performance.

  • Research analysis revealed the research gaps involved in assessing the parameters that govern the economics.

In recent decades, the industrial sector has sought more sustainable processes with lower energy consumption, and the wastewater treatment sector is no exception. In addition, industrial and urban wastewater with high nutrient concentrations represent serious environmental risks such as eutrophication if not properly treated (Liu & Hong 2021). Traditional wastewater treatment systems such as activated sludge, or advanced treatments such as membrane bioreactors, which use micro and/or ultrafiltration membranes, require high amounts of energy for nutrient removal (Asano et al. 2007). Therefore, in recent years, less energy-intensive processes have been developed. Among them, the technology of membrane photobioreactors (MPBR) stands out, whose suspension is fully or partially illuminated, allowing the growth of microalgae in the suspension (Fallahi et al. 2021). Microalgae are a group of simple uni- or multicellular photosynthetic microorganisms of eukaryotic and prokaryotic cells (Wang et al. 2014) that possess qualities such as the ability to reproduce rapidly, adapt adequately to the environment and, above all, have the ability to convert nutrients present in a medium into biomass using solar energy due to their high photosynthetic efficiency (Liu & Hong 2021). It has been widely demonstrated that microalgae use the nutrients present in all types of wastewater to grow efficiently (Li et al. 2019).

A membrane photobioreactor (MPBR) is a system that operates continuously and that combines a photobioreactor with an integrated or separate system that uses a micro or ultrafiltration membrane for the separation of the produced biomass (Luo et al. 2017). In recent years, new MPBR have been designed using forward osmosis and ion exchange membranes (Zhao et al. 2023).

These MPBR arise as a solution to the low sedimentation capacity of biomass and its resulting loss, as well as the limitations of conventional photobioreactors (Luo et al. 2017). They are designed to maximise access to natural or artificial light and provide the necessary conditions for algae growth (Alcántara et al. 2015). Some authors consider this type of photobioreactors as hybrid photobioreactors (Vo et al. 2019; Sirohi et al. 2022), since they combine a photobioreactor with a flat panel system or an airlift type column inside which a microfiltration or ultrafiltration membrane can be inserted (Kumar et al. 2020). As reported in the literature, the application of membrane photobioreactor technology to water treatment is carried out in closed or semi-closed reactors where the membrane allows the complete retention of the biomass, obtaining a high-quality permeate. As in the case of conventional membrane bioreactors, the main advantage of the technology is the ability to decouple the hydraulic residence time from the solids residence time, which allows process optimisation (Luo et al. 2017). In addition, minimising the fouling of the membrane during the filtration process is key to achieving proper operation, as insufficient control can lead to a substantial increase in operating costs and energy consumption (Azizi et al. 2021b).

The use of MPBR for wastewater treatment is a recent technology with many avenues for study, both in terms of optimal operating parameters for the performance of the process and in terms of species suitable for obtaining products of a certain value.

The analysis of operational parameters of an emerging technology as well as possible future trends is complex since it is difficult to reach a macro perspective point of view. Bibliometric studies are a powerful tool to analyse scientific advances qualitatively and quantitatively in a particular area (Wallin 2005). According to Pritchard (1969), bibliometric studies are mathematical analyses through statistical analysis of the scientific production and who generates this literature. Bibliometric studies make it possible to evaluate the interest of the scientific community in a specific field by means of statistical and mathematical methods on the number of scientific contributions (articles, books, conference papers, or patents), references, and use of keywords (Mao et al. 2021). Bibliometric studies can be divided into two categories: the first focuses on scientific production and the second on the interaction relations of the different authors, understood as the interrelationships between different countries, institutions, and keyword usage. In the first category, the analysis of the global, institutional, or individual scientific production facilitates the increase of knowledge and information on a field of study, favouring the analysis of future trends. On the other hand, the second category allows for the identification of the degree of interest in each region, as well as the interrelationships between the different research groups. The analysis of keywords and their concurrence is crucial to establish the scientific community's perspective quickly and effectively on a particular field (Ramos-Rodríguez & Ruíz-Navarro 2004; de Battisti & Salini 2013). Many authors are including bibliometric analyses to analyse the current status of many water treatment technologies, e.g., industrial wastewater treatment (Mao et al. 2021), sulphate removal from wastewater (Ding & Zeng 2022), municipal wastewater treatment (Marcal et al. 2021), desalination treatments (Zapata-Sierra et al. 2022), and zero brine discharge (Díaz et al. 2022). However, there is no such document on an emerging technology such as MPBR for wastewater treatment. The bibliometric study allows the identification of technological trends and advances in membrane bioreactors. In addition, it allows to analyse and compare different operating parameters to determine the optimum operating conditions for a developing technology. A comprehensive view of the technology is provided by bibliometric studies such as the one presented in this manuscript, which allows us to analyse the blueprint in the field of membrane photobioreactor.

The aim of this paper is to highlight the interest that the membrane photobioreactor has aroused in authors in recent years by carrying out a bibliometric analysis which presents a detailed analysis of the current state of the art of the technology, focusing on the operating parameters studied for the optimisation of the process and presenting possible trends for future research.

The bibliometric review has been conducted using the Scopus database (www.scopus.com), which has more than 25,000 titles from over 5,000 international publishers and a total of 77.8 million publications (Elsevier 2020). It covers diverse fields such as medicine, arts, humanities, technology, and science and has digitised records since 1970.

The search was carried out at the end of April 2023 and publications have been found dating back to the year 2000. The choice of search terms is key for the data to be truly representative of the study being carried out. In this case, it was decided to take as representative those publications in which the terms ‘Photobioreactor’, ‘Membrane’ and ‘Wastewater’ appear in the title, abstract or keywords. Table 1 shows the search equation used.

Table 1

Search equation and results

DatabaseSearch equationResultsTemporal limit
Scopus TITLE-ABS-KEY (membrane AND photobioreactor AND wastewater) AND (EXCLUDE (PUBYEAR, 2023)) 135 2000–2022 
DatabaseSearch equationResultsTemporal limit
Scopus TITLE-ABS-KEY (membrane AND photobioreactor AND wastewater) AND (EXCLUDE (PUBYEAR, 2023)) 135 2000–2022 

The impacts of the publications analysed were performed using the Scimago Journal and Country Rank (SJR) and CiteScore from Scopus. Microsoft Excel was used to analyse the data obtained after the search. The world scientific production was represented by using the mapping tool provided by Microsoft Excel, which uses a coloured scale to identify the most productive countries. In this case, the grey colour suggests zero production and the increase in the intensity of the blue colour indicates a higher production. Vosviewer software (version 1.6.17) was used to obtain the figures relating to co-occurrence of the keywords. The software selected is a tool that allows the construction and visualisation of bibliometric networks in the field under study. In this study, a representation by nodes is used. The size of the node is proportional to the use of the keyword and the thickness of the lines of connection between nodes specifies the strength of concurrence of the keywords. In addition, the colour scale allows us to analyse the temporal evolution of the use of the keywords, since the programme indicates the temporality of the highest number of co-occurrences.

A total of 135 publications were found, of which 1 was discarded because, after analysis, it was not related to the subject, 8 because their year of publication was 2023 for not being representative (at the time of the search the year had not ended). Therefore, 126 publications were analysed relating to the application of MPBR to wastewater treatment.

Finally, S-curve analysis makes it possible to estimate and predict the evolution of a technology in order to assess its maturity. The development of many things follows the S-growth curve, including the four stages of emerging, growth, maturity, and aging (Braun et al. 2000). Recently, many authors have used this type of curve to evaluate the state of maturity of a process or technology (Mao et al. 2021; Marcal et al. 2021; Ding & Zeng 2022). Typically, the S-growth curve can be expressed by the following equation.
(1)
where N represents the cumulative publications annually, t represents the time variable, a and b are kinetic model parameters and parameter K is the ‘publication ceiling value’ in this study which represents the estimated maximum number of publications that the scientific community is expected to produce on the topic under analysis (Mao et al. 2021). The fitting of the experimental data to the S-growth curve was carried out using Origin Pro software.

Documents and temporary distribution

Of the 126 publications found, the majority are scientific articles, nearly 87%, followed by communications to congresses, which account for 6% of the publications, with book chapters and conference reviews being a very small minority. Zapata-Sierra et al. (2022) indicate that the analysis of the type of publication can give an idea of the level of maturity of a topic among authors. Thus, a high degree of books and reviews among the publications can indicate a high degree of maturity, while a high percentage of conference presentations indicates a new and emerging technology. The results, therefore, justify that MPBR are growth and maturity phase (Zapata-Sierra et al. 2022), due to the high number of scientific articles. Another aspect to analyse the interest of the scientific community in MPBR is to analyse the percentage of results in this field compared to the number of papers published on photobioreactors. A search in SCOPUS using only the keywords ‘photobioreactor’ and ‘wastewater’ with the same temporal limitation (2000–2022) shows a total of 848 documents. Therefore, about 15% of the publications on photobioreactors relate to the use of MPBR. The percentage may seem low, but it must be considered that photobioreactors are a process without a consensus among the scientific community and therefore present a high heterogeneity of design and technological proposals (Sirohi et al. 2022). On the other hand, achieving the separation of algae from treated water necessitates a well-coordinated integration of a biological reactor and a separation system. In addition to MPBR, numerous alternative separation processes exist, including microalgae biofilm; microalgae-fungus co-culture, microalgae-activated sludge co-culture, and microalgae auto-flocculation (Huang et al. 2023). The main advantage of membrane photobioreactor processes is the total separation of the suspension from the treated wastewater, which represents a great benefit and an improvement in treatment efficiency.

Table 2 shows the time evolution of the documents displayed by the database and the ratio of authors per document. The data show a growing interest of the scientific community in the subject of MPBR. Between the years 2018 and 2021, the number of publications reached a peak. However, in the year 2022, a peak was observed reaching 26 publications, a number higher than the number found in the whole of the years 2021 and 2020. It is worth noting that there was no appreciable interest in the subject until 2011, when at least four publications per year can be found. The ratio of number of authors per paper allows an estimation of the interest of the scientific community, as it gives an idea of the number of researchers interested in the topic under analysis. However, no clear trend can be seen in the number of authors per document, remaining, over all the years at values of between 4 and 6 authors per document, with an average value of 5.15 ± 1.5, with a maximum value of 9.25 in 2014 and a minimum value of 2.67 in 2015.

Table 2

Documents and ratio author/documents per year

YearNum. documentsCumulative documentsNum. authorAuthor/documents
2022 26 126 143 5,50 
2021 14 100 83 5,93 
2020 14 86 70 5,00 
2019 15 72 63 4,20 
2018 16 57 70 4,38 
2017 41 44 4,89 
2016 10 32 41 4,10 
2015 22 2,67 
2014 19 37 9,25 
2013 15 21 4,20 
2012 10 13 4,33 
2011 27 6,75 
2010 6,00 
2009 5,00 
2000 5,00 
YearNum. documentsCumulative documentsNum. authorAuthor/documents
2022 26 126 143 5,50 
2021 14 100 83 5,93 
2020 14 86 70 5,00 
2019 15 72 63 4,20 
2018 16 57 70 4,38 
2017 41 44 4,89 
2016 10 32 41 4,10 
2015 22 2,67 
2014 19 37 9,25 
2013 15 21 4,20 
2012 10 13 4,33 
2011 27 6,75 
2010 6,00 
2009 5,00 
2000 5,00 

Many authors have used an S-curve growth model to try to predict the behaviour of scientific output on a particular topic (Mao et al. 2021; Marcal et al. 2021; Ding & Zeng 2022). Figure 1 shows the fit of real data to the modelling. The results reveal that membrane photobioreactor technology most likely is currently in the development and maturity phase. In this section, the main future trends of this technology are presented.
Figure 1

Future trends for scientists' interest growth regarding membrane photobioreactors (N represents the cumulative number of documents published).

Figure 1

Future trends for scientists' interest growth regarding membrane photobioreactors (N represents the cumulative number of documents published).

Close modal

Additionally, most of the documents have been published in English and only one document has been published in another language, namely French (Malériat et al. 2000).

Areas of publication

The point of view from which the authors have analysed this topic can be determined by analysing the areas of publication automatically provided by the Scopus database. In this case, 12 publication areas have been detected, 7 of which have more than 10 publications. The distribution of publications by area and the temporal distribution in the five main areas are shown in Figure 2.
Figure 2

Evolution of documents published per year in the five main areas of publication.

Figure 2

Evolution of documents published per year in the five main areas of publication.

Close modal

Environmental Sciences stand out from the rest of the areas, with a steady upward trend over the years studied, accounting for 33% of the publications found. Next are the areas of Chemical Engineering and Energy, with 18 and 15%, respectively, followed by Engineering, with 10%, and Chemistry and Biochemistry, Genetics and Molecular Biology with 6% each, and Agricultural and Biological Sciences, with 5%. Publications in the remaining areas accounted for only 7% of the total number.

Within each of the areas, the most cited articles are shown in Table 3. It should be noted that for the areas of Energy and Chemical Engineering, the most cited article is the same and three of them focus on nutrient removal by means of a membrane photobioreactor (Ruiz-Martinez et al. 2012; Gao et al. 2016a; Praveen et al. 2018).

Table 3

Most cited publications in the main areas of knowledge

AreaTitleAuthorYearSourceCitesReference
Environmental Science, Environmental Engineering, Ecology Continuous microalgae cultivation in aquaculture wastewater by a membrane photobioreactor for biomass production and nutrients removal Gao F.; Li, Chen; Yang Z.-H.; Zeng, Guang-Ming; Feng, Li-Juan; Liu, Jun-zhi; Liu, Mei; Cai, Hui-wen. 2016 Ecological Engineering 210 Gao et al. (2016a)  
Energy & Fuels, Agricultural Engineering, Biotechnology & Applied Microbiology Microalgae cultivation in wastewater: nutrient removal from anaerobic membrane bioreactor effluent Ruiz-Martinez, A., Martin Garcia, N., Romero, I., Seco, A., Ferrer, J. 2012 Bioresource Technology 153 Ruiz-Martinez et al. (2012)  
Chemical Engineering, Environmental Engineering Enhancing microalgae cultivation in anaerobic digestate through nitrification Praveen, P.; Guo, Y.; Kang, H.; Lefebvre, C.; Loh, K.-C. 2018 Chemical Engineering Journal 81 Praveen et al. (2018)  
Biotechnology & Applied Microbiology, Multidisciplinary Chemistry, Chemical Engineering, Environmental Engineering, Chemistry A hollow fiber membrane photobioreactor for CO2 sequestration from combustion gas coupled with wastewater treatment: a process engineering approach Kumar, A.; Yuan, X. Sahu, A.K.; Ergas, S. J.; Van Langenhov, H.; Dewulf, J. 2010 Journal of Chemical Technology and Biotechnology 97 Kumar et al. (2010)  
AreaTitleAuthorYearSourceCitesReference
Environmental Science, Environmental Engineering, Ecology Continuous microalgae cultivation in aquaculture wastewater by a membrane photobioreactor for biomass production and nutrients removal Gao F.; Li, Chen; Yang Z.-H.; Zeng, Guang-Ming; Feng, Li-Juan; Liu, Jun-zhi; Liu, Mei; Cai, Hui-wen. 2016 Ecological Engineering 210 Gao et al. (2016a)  
Energy & Fuels, Agricultural Engineering, Biotechnology & Applied Microbiology Microalgae cultivation in wastewater: nutrient removal from anaerobic membrane bioreactor effluent Ruiz-Martinez, A., Martin Garcia, N., Romero, I., Seco, A., Ferrer, J. 2012 Bioresource Technology 153 Ruiz-Martinez et al. (2012)  
Chemical Engineering, Environmental Engineering Enhancing microalgae cultivation in anaerobic digestate through nitrification Praveen, P.; Guo, Y.; Kang, H.; Lefebvre, C.; Loh, K.-C. 2018 Chemical Engineering Journal 81 Praveen et al. (2018)  
Biotechnology & Applied Microbiology, Multidisciplinary Chemistry, Chemical Engineering, Environmental Engineering, Chemistry A hollow fiber membrane photobioreactor for CO2 sequestration from combustion gas coupled with wastewater treatment: a process engineering approach Kumar, A.; Yuan, X. Sahu, A.K.; Ergas, S. J.; Van Langenhov, H.; Dewulf, J. 2010 Journal of Chemical Technology and Biotechnology 97 Kumar et al. (2010)  

Publication sources

One of the most decisive aspects when carrying out a bibliometric analysis is the determination of the main publication sources of the authors. Their identification helps to analyse those sources, journals, books, publishers, etc., in which to carry out the search prior to initiating research or, alternatively, possible avenues of publication of future studies. In this case, we have analysed those sources with more than four publications on the subject, obtaining the results shown in Table 4. All sources analysed with more than four documents are journals.

Table 4

Sources with more than four publications on membrane photobioreactors

SourceDocumentsEditorialISSNCiteScore (2022)SJR (2022)
Bioresource Technology 23 Elsevier 0960–8524 17.4 11.889 
Water Research Elsevier 0043–1354 18 13.400 
Chemosphere Elsevier 0045–6535 11.7 8.943 
Science of the Total Environment Elsevier 0048–9697 14.1 10.754 
Membranes MDPI 2077–0375 3.7 0.61 
SourceDocumentsEditorialISSNCiteScore (2022)SJR (2022)
Bioresource Technology 23 Elsevier 0960–8524 17.4 11.889 
Water Research Elsevier 0043–1354 18 13.400 
Chemosphere Elsevier 0045–6535 11.7 8.943 
Science of the Total Environment Elsevier 0048–9697 14.1 10.754 
Membranes MDPI 2077–0375 3.7 0.61 

The journal Bioresource Technology, published by Elsevier, is the preferred journal by authors for their publications on this topic, with 23 publications, well above the next highest one. Among the top journals shown in Table 4, only Membranes and Water Science and Technology are in quartiles below Q1 as shown in Figure 3 based on the data reported by the Journal Citation Report for the year 2021. The rest are in the first quartile (Q1) for all areas. The annual distribution of publications in these journals is shown in Figure 4.
Figure 3

Journal impact factor ranking of the journals that have published the most on membrane photobioreactors in wastewater treatment. Author prepared based on data from the Journal of Citation Reports for the year 2021.

Figure 3

Journal impact factor ranking of the journals that have published the most on membrane photobioreactors in wastewater treatment. Author prepared based on data from the Journal of Citation Reports for the year 2021.

Close modal
Figure 4

Evolution of articles in the top five journals by year.

Figure 4

Evolution of articles in the top five journals by year.

Close modal

In 2011, the first two publications appeared in the five journals with the most publications, the first journal being Bioresource Technology. From this year on, this journal has been a constant source of publications on the subject, and there has been only a single year in which no articles have been published on the subject. The remaining journals, on the other hand, have shown irregular behaviour, with years without publications on the subject.

Analysing the number of papers published by the journals on MPBR for wastewater treatment, most journals (42 journals) have only published one article on the topic, while a few have published more than one contribution, 16 to be precise. This behaviour was described by the Lotka Law (Price 1976). Figure 5 shows the Lotka Law fit of the results obtained for this search. A high regression of the data was obtained (R2 = 0.994), which shows that the number of journals with many publications on a given topic is low.
Figure 5

Lotka Law.

Most cited publications

The five most cited publications on MPBR applied to wastewater treatment are summarised in Table 5. All of them have more than 100 citations each, and only 2 coincide with the most cited publications by area of knowledge shown in Table 3.

Table 5

Most cited publications

TitleAuthorsJournalYearCitesReference
Continuous microalgae cultivation in aquaculture wastewater by a membrane photobioreactor for biomass production and nutrients removal Gao F.; Li, Chen; Yang Z.-H.; Zeng, Guang-Ming; Feng, Li-Juan; Liu, Jun-zhi; Liu, Mei; Cai, Hui-wen. Ecological Engineering 2016 210 Gao et al. (2016a)  
Wastewater treatment using microalgae: how realistic a contribution might it be to significant urban wastewater treatment? Acién, F.G.; Gómez-Serrano, C.; Morales-Amaral, M.M.; Fernández-Sevilla, J.M.; Molina-Grima, E. Applied Microbiology and Biotechnology 2016 189 Acién et al. (2016)  
Microalgae cultivation in wastewater: nutrient removal from anaerobic membrane bioreactor effluent Ruiz-Martinez, A.; Martin Garcia, N.; Romero, I.; Seco, A.; Ferrer, J. Bioresource Technology 2012 153 Ruiz-Martinez et al. (2012)  
Simultaneous microalgae cultivation and wastewater treatment in submerged membrane photobioreactors: a review Luo, Y.; Le-Clech, P.; Henderson, R.K. Algal Research 2017 124 Luo et al. (2017)  
A review of membrane fouling and its control in algal-related membrane processes Liao, Y.; Bokhary, A.; Maleki, E.; Liao, B. Bioresource Technology 2018 123 Liao et al. (2018)  
TitleAuthorsJournalYearCitesReference
Continuous microalgae cultivation in aquaculture wastewater by a membrane photobioreactor for biomass production and nutrients removal Gao F.; Li, Chen; Yang Z.-H.; Zeng, Guang-Ming; Feng, Li-Juan; Liu, Jun-zhi; Liu, Mei; Cai, Hui-wen. Ecological Engineering 2016 210 Gao et al. (2016a)  
Wastewater treatment using microalgae: how realistic a contribution might it be to significant urban wastewater treatment? Acién, F.G.; Gómez-Serrano, C.; Morales-Amaral, M.M.; Fernández-Sevilla, J.M.; Molina-Grima, E. Applied Microbiology and Biotechnology 2016 189 Acién et al. (2016)  
Microalgae cultivation in wastewater: nutrient removal from anaerobic membrane bioreactor effluent Ruiz-Martinez, A.; Martin Garcia, N.; Romero, I.; Seco, A.; Ferrer, J. Bioresource Technology 2012 153 Ruiz-Martinez et al. (2012)  
Simultaneous microalgae cultivation and wastewater treatment in submerged membrane photobioreactors: a review Luo, Y.; Le-Clech, P.; Henderson, R.K. Algal Research 2017 124 Luo et al. (2017)  
A review of membrane fouling and its control in algal-related membrane processes Liao, Y.; Bokhary, A.; Maleki, E.; Liao, B. Bioresource Technology 2018 123 Liao et al. (2018)  

Among the most cited articles, two of them are experimental research articles. Specifically, the most cited article deals with the treatment of water from aquaculture by means of a membrane photobioreactor using a pure culture of Chlorella vulgaris and Scenedesmus obliquus (Gao et al. 2016a). C. vulgaris showed better performance and was continuously cultivated in MPBR. The significant impact of this study lies in its pioneering demonstration of the remarkable nutrient removal capacity (86.1% for TN and 82.7% for TP) when applied to low-strength wastewater. Notably, the ammonium concentration in the effluent was effectively lowered to levels below 0.002 mg/L. Additionally, the research highlighted the feasibility of achieving substantial biomass productivity (42.6 mg/L day) at low hydraulic residence time (1 day). This capability to operate at low hydraulic retention times (HRTs) has served as a foundation for numerous subsequent studies that have adopted these values (Praveen et al. 2016; Novoa et al. 2020; Peng et al. 2020; Solmaz & Işık 2020). In the third most cited article, the authors evaluate the efficiency of a laboratory-scale membrane photobioreactor for the treatment of an effluent from a submerged anaerobic membrane bioreactor (SAnMBR). They found that this effluent is suitable for the growth of microalgae and where the removal of more than 67% of the ammonium present and about 98% of the phosphorus as phosphate is achieved by applying a solid retention time (SRT) of 2 days and operating semi-continuously for 42 days (Ruiz-Martinez et al. 2012). The principal contribution of this investigation resided in presenting a tangible proof of concept, wherein a mixed polyculture of indigenous species exhibited robust growth and proved to be efficacious in nutrient removal from real wastewater. Subsequent studies have emphasised this crucial finding (Marbelia et al. 2014; Xu et al. 2014; Praveen et al. 2019; Peng et al. 2020).

The other most cited publications are reviews, ranking in the top five in second, fourth, and fifth positions. The second most cited article focuses on the analysis of the conditions affecting the operability of a membrane photobioreactor, the characteristics of the wastewater, biological aspects such as the establishment of algae-bacteria consortia, etc., and how these aspects affect the nutrient removal capacity of the system. In addition, the economic aspects of the process are also studied in comparison with conventional wastewater treatment processes. This study also includes an introduction to the main methods for biomass harvesting and critically describes future trends in this field of study (Acién et al. 2016). The fourth most cited article analyses extensively the operational variables that affect the growth of biomass in MPBR, nutrient removal performance, etc. Among the multiple variables, they analyse the effect of pH, hydraulic retention time (HRT), SRT, light, aeration and temperature, as well as considering the interrelationships between these parameters (Luo et al. 2017).

Institutions, countries, and their interrelationships

An analysis of the countries that have been the most productive on the topic is shown in Figure 6. The distribution of publications among the countries makes it possible to determine whether efforts have been made globally on the topic or whether, on the contrary, interest is localised in some areas of the planet. China is the country with the most publications (30), followed by Spain and the USA (with 20 and 12, respectively).
Figure 6

Geographical distribution of scientific production in membrane photobioreactors.

Figure 6

Geographical distribution of scientific production in membrane photobioreactors.

Close modal

Singapore and Canada finish the list of the five most productive countries with 11 publications each. The interrelationships between countries in publications can give an idea of the degree of collaboration that exists. Table 6 shows, by country, the top five countries with which they have collaborated, in order of highest to lowest interrelationships. The number of documents on which they have collaborated is indicated in brackets.

Table 6

Top 10 producing countries and interrelationships

Partnersa
CountryDocuments12345
China 30 Canada (6) Singapore (3) USA (3) Australia (1) Benin (1) 
Spain 20 Italy (1)     
USA 12 China (3) Belgium (1) Canada (1) Finland (1) France (1) 
Singapore 11 New Zealand (5) China (3)    
Canada 11 China (6) Australia (2) USA (1)   
Iran 10 France (1) Italy (1)    
India Denmark (1) Malaysia (1) United Kingdom (1)   
Italy Denmark (1) Iran (1) Poland (1) Saudi Arabia (1) Spain (1) 
Australia Canada (2) China (1) Indonesia (1)   
Japan Thailand (2) China (1)    
Partnersa
CountryDocuments12345
China 30 Canada (6) Singapore (3) USA (3) Australia (1) Benin (1) 
Spain 20 Italy (1)     
USA 12 China (3) Belgium (1) Canada (1) Finland (1) France (1) 
Singapore 11 New Zealand (5) China (3)    
Canada 11 China (6) Australia (2) USA (1)   
Iran 10 France (1) Italy (1)    
India Denmark (1) Malaysia (1) United Kingdom (1)   
Italy Denmark (1) Iran (1) Poland (1) Saudi Arabia (1) Spain (1) 
Australia Canada (2) China (1) Indonesia (1)   
Japan Thailand (2) China (1)    

aThe countries have been ordered according to the number of collaborations carried out, with 1 indicating the country with which the most collaborations and 5 indicating the country where the least have been carried out. The number of documents on which they have collaborated is indicated in brackets.

Table 6 shows that Spain, despite being the second largest producer of publications on the subject, has only collaborated with Italy. By contrast, countries with lower production have a fairly high level of collaboration, for example, Australia and India.

An analysis of the producing institutions has also been conducted to find out whether there are several institutions in a country or whether there is only one institution in charge of research in this field. Figure 7 shows the top 20 most producing institutions. The Universitat Politècnica de València and Universitat de València stands out with 12 documents each, which represents almost 60% of the publications in Spain.
Figure 7

Top 20 institutions.

Figure 7

Top 20 institutions.

Close modal

In third place is the National University of Singapore, which accounted for 100% of Singapore's publications. The 30 publications from China are divided between the Ministry of Education of China, Zhejiang Ocean University, Zhejiang Normal University, and Chongqing University, mostly. However, the country with the most institutions in the top 20 most productive institutions after China is Iran with four, namely Shahid Sadoughi University of Medical Science, Shiraz University of Medical Sciences, Tehran Univesity of Medical Sciences, Islamic Azad University, with three publications each. However, an analysis of these publications shows that they are the same ones for all the centres, i.e., all three publications are collaborations between these five research centres. This corroborates what is shown in Table 6, which shows that Iran has little collaboration with other countries.

Keywords

Keywords make it possible to analyse the conceptual blocks through which scientific production on a given topic is approached (Delgado Vázquez et al. 2019). Figure 8 shows the interrelationships between the keywords used by the authors in the 111 documents found. To estimate this figure, those with a co-occurrence of five times in the last 10 years have been taken into consideration and repeated keywords such as ‘nutrient removal’ and ‘nutrients removal’ have been eliminated as they are considered the same keyword.
Figure 8

Temporal evolution of the keywords used by authors over the last 10 years.

Figure 8

Temporal evolution of the keywords used by authors over the last 10 years.

Close modal

As can be seen, the co-occurrence of keywords used by authors indicates that the use of MPBR focuses on nutrient removal in wastewater treatment. Forward osmosis is also beginning to appear as a keyword because recent studies have used this technology to concentrate secondary treatment effluents as a step prior to the implementation of a membrane photobioreactor, effectively removing N- and P- (Wang et al. 2020) or as a next step after the operation of a photobioreactor that allows for improved nutrient removal with minimal energy consumption (Praveen & Loh 2019). Membrane fouling also appears as a keyword that has been used by the authors in recent years, demonstrating the interest of the scientific community by appearing in 12 articles in the last 10 years. Authors’ efforts in this regard have focused on analysing the causes of membrane fouling, identifying the best operating conditions that reduce the deposition of materials on the membrane surface. For example, Lee et al. (2018) attribute the causes of fouling to the presence of soluble microbial products (SMP) and/or extracellular polymeric substances (EPS) and attempt to mitigate the presence of these substances by varying the HRT. Others have analysed the effect on fouling of other key parameters, such as exposure to light (Keramati et al. 2021) or nutrient loading of the influent (Zhang et al. 2021). The control of membrane fouling is a fundamental aspect as it affects the operability of the process because high fouling leads to a reduction in productivity, and an increase in the frequency of membrane cleaning and energy consumption (Liao et al. 2018).

Analysed operating parameters and operating performances of MPBR

This section analyses 50 articles, considered to be the most representative of the research trends developed in the last 10 years (Tables 7 and 8). Three primary research directions have been discerned in the field of investigation: (1) microalgae species and wastewater characteristics, (2) enhancement of operational parameters for optimisation, and (3) examination of process configuration.

Table 7

Main operating parameters analysed in membrane photobioreactors

IDProcessaFeedwaterbCc (mg/L)TN (mg/L)TP (mg/L)Microbial speciesScaledMembraneeArea (m2)Flux (L/m2 h)LightAerationTemp (°C)pH
Gao et al. (2016a)  MPBR RIW BOD5 (8.5) 6.8 0.4 Chlorella vulgaris PVDF, HF, 0.1 μm 0.05 NA 9,000 lux 0.5 L/min, 99.9% CO2 25 6.8–7.2 
Tan et al. (2014)  A-MPBR RISEW COD (702–1,026) 240.3–382.7 22.7–40.2 Chlorella vulgaris DM 0.34 520–57 Outdoor 15–20 L/min, 5–9% CO2 summer (35–39); winter
(7–12);
spring
(17–22); autumn (23–27) 
> 9.25 
Marbelia et al. (2014)  MPBR SSEW – 7.5–22.1 1.7–2.2 Chlorella vulgaris PE, FS 4 × 0.016 2.6–13 72 W 5 L/day 15–22 8–9 
Chitapornpan et al. (2013)  PAnMBR RIW COD (700–9,750) 1.0–35.0 NA Native purple phototrophic bacteria PE, HF, 0.4 μm 0.04 NA 120 W, IR-2,880 transmitting filter (270 W/m2– 28–39 6–8 
Praveen et al. (2018)  MPBR SSEW COD (124–190) N- (25–100); N- (5–51) 10–25 Chlorella vulgaris PVDF, HF, 0.1 μm 0.0308 1.33 8,000 lux 1 L/min, 3% CO2 24–26 NA 
Singh & Thomas (2012)  MPBR RSEW COD (30–50)  (50–80); (18–25)  (10–20) Chlorella vulgaris PES, 0.45 μm 0.1 12 12 h/12 h (4,000 lux) 4 L/min 24 7.2–7.5 
Gao et al. (2016b)  MPBR RSEW COD (39.9) 13.3 0.8 Chlorella vulgaris PVDF, HF, 0.1 μm 0.05 NA 120 μmol/m20.5 L/min, 4% CO2 25–30 6.5–7.8 
Praveen & Loh (2016)  O-MPBR SSEW, STEW – 8.8–22.8 2.4–6.0 Chlorella vulgaris FO (TFC) 0.036 1.28–1.59 1,000–1,500 lux 0.4 vvm, 5% CO2 NA NA 
Zhen-Feng et al. (2011)  MPBR SISEW – 8.0–22.0 0.2–1.2 Scenedesmus sp. LX1 HF, 0.2 μm 10 NA 6,000 lux 10 L/min NA 7.7–8.5 
Praveen et al. (2016)  O-MPBR, MPBR SSEW – 4.35 1.8 Chlorella vulgaris FO (TFC), MF (PVDF) FO (0.036), MF (0.036) FO (3.18–6.37); MF (3.18–6.37) 1,500–2,000 lux 0.4 vvm, 5% CO2 NA 7.0–7.5 
Sheng et al. (2017)  SB-MPBR RSEW – 24.7 3.5 Native microalgae (Euglena sp.) PVDF, FS, 0.16 μm 0.012 NA 10,000 lux 1.8 L/min NA NA 
Peng et al. (2020)  B-MPBR RSEW COD (7.8) 9.1 4.6 Chlorella vulgaris PVDF, HF, 0.1 μm 0.05 0.4 102–112 μmol/m20.5 L/min, CO2 26 NA 
Shi et al. (2018)  MPBR SSALW TOC (58.6) NA NA Chlorella sp. Ceramic, FS, 0.1 μm 0.045 3.3 2,000 Lux 0.5 L/min 25 NA 
Boonchai & Seo (2015)  MPBR RSEW COD (10.5) 18.8 1.0 Chlorella sp. ADE4; Chlorella vulgaris HDPE, HF, 0.4 μm 0.04 3.75 14 h/10 h (50 μmol/m2 s) 4 L/min 25 7.5–8.5 
Luo et al. (2018)  MB-MPBR SSEW DOC (9.0) 14.1 2.5 Microalgal-bacterial consortia (dominated by Chlorella vulgarisPVDF, HF, 0.04 μm NA  85 μmol/m22 L/min NA NA 
González-Camejo et al. (2020b)  MB-MPBR RSEW COD (63) 48.8 4.4 Native microalgae-bacteria consortia (dominated by Chlorella sp.) PVDF, HF, 0.03 μm 3.4 NA Outdoor + artificial LED lamps (277–284 μmol/m2 s) Air, CO2 (pH control) Outdoor (16.9–18.8) 7.5 
Viruela et al. (2018)  MB-MPBR RSEW COD (31) 51.3 6.8 Native microalgae-bacteria consortia (dominated by Scenedesmus sp.) PVDF, HF, 0.03 μm 2 × 31 NA Outdoor (169–378 μE/m2 s) 2 m3/h, 99.9% CO2 (pH control) Outdoor (23.9–28.7) 7.5 
Gao et al. (2019)  MPBR RSEW COD (25.6) 12.8 0.6 Chlorella vulgaris; Scenedesmus obliquus PVDF, HF, 0.1 μm NA NA 102–112 μmol/m20.5 L/min, 99.9% CO2 (pH control) 25–28 6.8–7.5 
Chitapornpan et al. (2012)  PAnMBR RIW COD (700–9,750) NA NA Native purple phototrophic bacteria PE, HF, 0.4 μm 0.04 3.75–7.5 180 W, IR-2880 transmitting filter – 28–35 
Lu et al. (2021)  MPBR SSEW – 40 Chlorella vulgaris HF, 0.01 μm NA NA 140 μmol/m20.5–1.0 L/min, 4% of CO2 28 6.5–7.0 
Derakhshan et al. (2018b)  MB-MPBR RSEW, SSEW COD (30–100) NOx (8–9.9)  (12–9.3) Native microalgae-bacteria consortia PVDF, HF, 0.1 μm 0.043 20 12 h/12 h (8,000 lux) Air, 0.04% CO2 26 7.0 
González et al. (2017)  MB-MPBR RSEW COD (124) 46 Native microalgae-bacteria consortia PVDF, HF, 0.04 μm 0.9 12 Outdoor (150–224 W/m2NA Outdoor (18.9) 7.7 
Derakhshan et al. (2019)  B-MB-MPBR, MB-MPBR SSEW COD (30–90) Microalgae-bacteria consortia PVDF, HF, 0.1 μm 0.043 20 12 h/12 h (8,500 lux) Air, 0.04% CO2 33 7.0 
Fortunato et al. (2020)  MPBR SSEW – 60 10 Chlorella vulgaris PVDF, HF, 0.016 μm 3.7·10–3 20 130 μmol/m2Air 30 L/h 25 7.0–8.0 
Choi (2015)  MPBR RPEW COD (209.9) 40.0 9.2 Chlorella vulgaris PES, 0.2 μm 0.2 16 h/8 h (270–310 μE/m2 s) Air 0.5 L/min, CO2 25 7.2 
Zhang et al. (2020)  MB-MPBR SMW COD (440.3) 36.9–46.5 38–9.5 Chlorella Vulgaris-activated sludge PVDF, FS, 0.1 μm 0.03 6.8; 10.6 8,400 lux Air 3.75 L/min, 0.05% CO2 26.9 7.3 
González-Camejo et al. (2020a)  MB-MPBR RSEW COD (71) 45.0 4.7 Native microalgae-bacteria consortia (dominated by Chlorella sp.) PVDF, HF, 0.03 μm 2 × 3.4 15–26 Outdoor + artificial LED lamps (281–344 μmol/m2 s) Air, CO2 (pH control) Outdoor + cooling system (23.9–25.5) 7.5 
Parakh et al. (2020)  MPBR+ Settler SSEW 14 0.65 Graesiella emersoni PVDF, 0.1 μm 0.0588 NA 14 W 1.5 L/min, 5% CO2 NA 6.5–7.5 
Honda et al. (2017)  MPBR SSEW TOC (5) 15 0.3 Chlorella vulgaris NIES-2170 PVDF, HF, 0.1 μm 0.085 NA 20 W/m2 Air, 1% CO2 24 NA 
Praveen et al. (2019)  MPBR SSEW – 21 Scenedesmus obliquus FACHB-417 PVDF, FS 0.0308 2.4 130 μmol/m2Air, 3% CO2 NA 6.5–7.5 
Noguchi et al. (2017)  MPBR SADS TOC (0.66) 85.4 23.1 Chlorella vulgaris NIES-2170 HF, 0.1 μm 0.085 NA 24 h/9 h (6 W/m2– 21.7 7.0–8.0 
Lee et al. (2018)  MPBR RISEW TOC (26.5) 41.6 0.7 Botryococcus braunii PVDF, 0.5 μm 2.81·10−3 2.4; 3; 4 220 μE/m26 L/min 25 NA 
González-Camejo et al. (2018)  MB-MPBR RSEW COD (72) 40–80 4–10 Native microalgae-bacteria consortia (dominated by Chlorella sp. and Scenedesmus sp.) PVDF, HF, 0.03 μm 2 × 3.4 NA Outdoor (119–357 μmol/m2 s) +artificial LED lamps (300 μmol/m2 s) 0.09 vvm, CO2 (pH control) 16–28 7.5 
Azizi et al. (2021a)  MPBR SSEW –  (83)  (9) Chlorella vulgaris  0.45 μm NA 18 24 h/0 h; 16 h/8 h; 12 h/12 h (100; 300 μmol/m2 s) Air, 0.04% CO2 25 NA 
Derakhshan et al. (2018a)  B-MB-MPBR RSEW COD (59) NOx (11)  (10) Native microalgae-bacteria consortia PVDF, HF, 0.1 μm 0.043 20 12 h/12 h (100 μmol/m2 s) 4–5 L/min, 0.04% CO2 26 NA 
Gao et al. (2021)  MPBR RSEW TOC (107) 48.4 4.23 Chlorella pyrenoidosa FACHB-5 PVDF, HF, 0.1 μm 0.05 NA 82.4–90.6 μmol/m240 mL/min, CO2 30 7.3 
Novoa et al. (2020)  MPBR SSEW – 65 10 Chlorella vulgaris UTEX 259 PVDF, HF, 0.018 μm NA 10 130 μmol/m230 L/h 25 7.0–8.0 
Solmaz & Işık (2019)a, 2019bMB-MPBR RSEW BOD (12) 5.2 0.6 Native microalgae-bacteria consortia PVDF, HF, 0.45 μm NA 20 12 h/12 h (6,000 lux) 5 L/min 23 7.5–9.0 
Lau et al. (2019)  SB-MPBR RSEW NA 20–21 2.25 Staurastrum sp. PVDF, FS, 0.16 μm 0.02 40 1,000 lux 3.5 L/min 20 NA 
Wang et al. (2020)  O-MPBR SSEW Glucose (50) NH4Cl (30) K2HPO4 (21.4) + KH2PO4 (10.6) Chlorella vulgaris UTEX 395, Scenedesmus sp. HTB1 HF 2.3 NA 16 h/8 h (100 μE/m2 s) 20% CO2/N2 (pH control) 20 NA 
Solmaz & Işık (2020)  MB-MPBR SSEW COD (32.9) 18.0 8.8 Microalgae-bacteria consortia PVDF, HF, 0.45 μm NA 20 12 h/12 h (6,000 lux) 5 L/min 23 6.4–7.5 
Dalaei et al. (2020)  PAnMBR SPEW COD (430) + Ethanol (200; 300) 43 6.5 Native purple phototrophic bacteria FS, 0.45 μm 0.12 1.9 IR light (3; 1.4 W/m2– 22 7.3 
Dalaei et al. (2019)  PAnMBR SPEW COD (370) + Ethanol (285; 290; 300; 310; 400) 48–56 6.6–8.2 Native purple phototrophic bacteria FS, 0.45 μm 0.12 1.9 IR light (50 W/m2– 22; 11 7.2 
Solmaz & Işik (2019)a, 2019bMB-MPBR SSEW COD (32.9) 18.4 8.8 Microalgae-bacteria consortia PVDF, HF, 0.45 μm NA 20 12 h/12 h (6,000 lux) 5 L/min 23 6.4–8.2 
Keramati et al. (2021)  MPBR RISEW COD (67)  (49)  (36) Chlorella vulgaris FS, 0.4 μm NA 20 LED flashing light (1 Hz; 1,000 Hz) (200 μmol/m2 s) 7 L/min NA 7.0–8.0 
Lee et al. (2020)  MPBR SISEW TOC (530) 183 15 Botryococcus braunii UTEX 2441 PVDF, HF, 0.5 um 2.81·10−4 2.4; 3; 4 24 h/0 h; 12/12 h (150 μmol E/m2 s) NA 30 NA 
Wang et al. (2019)  B-MB-MPBR RIW+ RPEW SCOD (1066) 156.3 9.7 Native microalgae-bacteria consortia PVDF, HF, 0.04 μm NA 200–250 μmol/m24 L/min NA NA 
Zhang et al. (2021)  MB-MPBR SMW COD (440.3) 36.9–46.5 3.8–9.5 Chlorella vulgaris-activated sludge PVDF, FS, 0.1 μm 0.03 6.8; 10.6 8,400 lux 3.75 L/min, 0.05% CO2 26.9 7.3 
Spennati et al. (2021)  MPBR RIW COD (119.3) NA NA Chlorella vulgaris CCAP 211, Arthrospira platensis UTEX 1926 NA NA NA 60 μmol/m2NA 23–25 6.3–7.9 
Cheng et al. (2021)  B-MPBR SIW COD (1025) N-NH3 (98.4) K2HPO4 (25) Rhodopuesdomonas pulstris GO/PSF composite 0.05 24.1 300 lux 1.5 m3/m225 7.5 
IDProcessaFeedwaterbCc (mg/L)TN (mg/L)TP (mg/L)Microbial speciesScaledMembraneeArea (m2)Flux (L/m2 h)LightAerationTemp (°C)pH
Gao et al. (2016a)  MPBR RIW BOD5 (8.5) 6.8 0.4 Chlorella vulgaris PVDF, HF, 0.1 μm 0.05 NA 9,000 lux 0.5 L/min, 99.9% CO2 25 6.8–7.2 
Tan et al. (2014)  A-MPBR RISEW COD (702–1,026) 240.3–382.7 22.7–40.2 Chlorella vulgaris DM 0.34 520–57 Outdoor 15–20 L/min, 5–9% CO2 summer (35–39); winter
(7–12);
spring
(17–22); autumn (23–27) 
> 9.25 
Marbelia et al. (2014)  MPBR SSEW – 7.5–22.1 1.7–2.2 Chlorella vulgaris PE, FS 4 × 0.016 2.6–13 72 W 5 L/day 15–22 8–9 
Chitapornpan et al. (2013)  PAnMBR RIW COD (700–9,750) 1.0–35.0 NA Native purple phototrophic bacteria PE, HF, 0.4 μm 0.04 NA 120 W, IR-2,880 transmitting filter (270 W/m2– 28–39 6–8 
Praveen et al. (2018)  MPBR SSEW COD (124–190) N- (25–100); N- (5–51) 10–25 Chlorella vulgaris PVDF, HF, 0.1 μm 0.0308 1.33 8,000 lux 1 L/min, 3% CO2 24–26 NA 
Singh & Thomas (2012)  MPBR RSEW COD (30–50)  (50–80); (18–25)  (10–20) Chlorella vulgaris PES, 0.45 μm 0.1 12 12 h/12 h (4,000 lux) 4 L/min 24 7.2–7.5 
Gao et al. (2016b)  MPBR RSEW COD (39.9) 13.3 0.8 Chlorella vulgaris PVDF, HF, 0.1 μm 0.05 NA 120 μmol/m20.5 L/min, 4% CO2 25–30 6.5–7.8 
Praveen & Loh (2016)  O-MPBR SSEW, STEW – 8.8–22.8 2.4–6.0 Chlorella vulgaris FO (TFC) 0.036 1.28–1.59 1,000–1,500 lux 0.4 vvm, 5% CO2 NA NA 
Zhen-Feng et al. (2011)  MPBR SISEW – 8.0–22.0 0.2–1.2 Scenedesmus sp. LX1 HF, 0.2 μm 10 NA 6,000 lux 10 L/min NA 7.7–8.5 
Praveen et al. (2016)  O-MPBR, MPBR SSEW – 4.35 1.8 Chlorella vulgaris FO (TFC), MF (PVDF) FO (0.036), MF (0.036) FO (3.18–6.37); MF (3.18–6.37) 1,500–2,000 lux 0.4 vvm, 5% CO2 NA 7.0–7.5 
Sheng et al. (2017)  SB-MPBR RSEW – 24.7 3.5 Native microalgae (Euglena sp.) PVDF, FS, 0.16 μm 0.012 NA 10,000 lux 1.8 L/min NA NA 
Peng et al. (2020)  B-MPBR RSEW COD (7.8) 9.1 4.6 Chlorella vulgaris PVDF, HF, 0.1 μm 0.05 0.4 102–112 μmol/m20.5 L/min, CO2 26 NA 
Shi et al. (2018)  MPBR SSALW TOC (58.6) NA NA Chlorella sp. Ceramic, FS, 0.1 μm 0.045 3.3 2,000 Lux 0.5 L/min 25 NA 
Boonchai & Seo (2015)  MPBR RSEW COD (10.5) 18.8 1.0 Chlorella sp. ADE4; Chlorella vulgaris HDPE, HF, 0.4 μm 0.04 3.75 14 h/10 h (50 μmol/m2 s) 4 L/min 25 7.5–8.5 
Luo et al. (2018)  MB-MPBR SSEW DOC (9.0) 14.1 2.5 Microalgal-bacterial consortia (dominated by Chlorella vulgarisPVDF, HF, 0.04 μm NA  85 μmol/m22 L/min NA NA 
González-Camejo et al. (2020b)  MB-MPBR RSEW COD (63) 48.8 4.4 Native microalgae-bacteria consortia (dominated by Chlorella sp.) PVDF, HF, 0.03 μm 3.4 NA Outdoor + artificial LED lamps (277–284 μmol/m2 s) Air, CO2 (pH control) Outdoor (16.9–18.8) 7.5 
Viruela et al. (2018)  MB-MPBR RSEW COD (31) 51.3 6.8 Native microalgae-bacteria consortia (dominated by Scenedesmus sp.) PVDF, HF, 0.03 μm 2 × 31 NA Outdoor (169–378 μE/m2 s) 2 m3/h, 99.9% CO2 (pH control) Outdoor (23.9–28.7) 7.5 
Gao et al. (2019)  MPBR RSEW COD (25.6) 12.8 0.6 Chlorella vulgaris; Scenedesmus obliquus PVDF, HF, 0.1 μm NA NA 102–112 μmol/m20.5 L/min, 99.9% CO2 (pH control) 25–28 6.8–7.5 
Chitapornpan et al. (2012)  PAnMBR RIW COD (700–9,750) NA NA Native purple phototrophic bacteria PE, HF, 0.4 μm 0.04 3.75–7.5 180 W, IR-2880 transmitting filter – 28–35 
Lu et al. (2021)  MPBR SSEW – 40 Chlorella vulgaris HF, 0.01 μm NA NA 140 μmol/m20.5–1.0 L/min, 4% of CO2 28 6.5–7.0 
Derakhshan et al. (2018b)  MB-MPBR RSEW, SSEW COD (30–100) NOx (8–9.9)  (12–9.3) Native microalgae-bacteria consortia PVDF, HF, 0.1 μm 0.043 20 12 h/12 h (8,000 lux) Air, 0.04% CO2 26 7.0 
González et al. (2017)  MB-MPBR RSEW COD (124) 46 Native microalgae-bacteria consortia PVDF, HF, 0.04 μm 0.9 12 Outdoor (150–224 W/m2NA Outdoor (18.9) 7.7 
Derakhshan et al. (2019)  B-MB-MPBR, MB-MPBR SSEW COD (30–90) Microalgae-bacteria consortia PVDF, HF, 0.1 μm 0.043 20 12 h/12 h (8,500 lux) Air, 0.04% CO2 33 7.0 
Fortunato et al. (2020)  MPBR SSEW – 60 10 Chlorella vulgaris PVDF, HF, 0.016 μm 3.7·10–3 20 130 μmol/m2Air 30 L/h 25 7.0–8.0 
Choi (2015)  MPBR RPEW COD (209.9) 40.0 9.2 Chlorella vulgaris PES, 0.2 μm 0.2 16 h/8 h (270–310 μE/m2 s) Air 0.5 L/min, CO2 25 7.2 
Zhang et al. (2020)  MB-MPBR SMW COD (440.3) 36.9–46.5 38–9.5 Chlorella Vulgaris-activated sludge PVDF, FS, 0.1 μm 0.03 6.8; 10.6 8,400 lux Air 3.75 L/min, 0.05% CO2 26.9 7.3 
González-Camejo et al. (2020a)  MB-MPBR RSEW COD (71) 45.0 4.7 Native microalgae-bacteria consortia (dominated by Chlorella sp.) PVDF, HF, 0.03 μm 2 × 3.4 15–26 Outdoor + artificial LED lamps (281–344 μmol/m2 s) Air, CO2 (pH control) Outdoor + cooling system (23.9–25.5) 7.5 
Parakh et al. (2020)  MPBR+ Settler SSEW 14 0.65 Graesiella emersoni PVDF, 0.1 μm 0.0588 NA 14 W 1.5 L/min, 5% CO2 NA 6.5–7.5 
Honda et al. (2017)  MPBR SSEW TOC (5) 15 0.3 Chlorella vulgaris NIES-2170 PVDF, HF, 0.1 μm 0.085 NA 20 W/m2 Air, 1% CO2 24 NA 
Praveen et al. (2019)  MPBR SSEW – 21 Scenedesmus obliquus FACHB-417 PVDF, FS 0.0308 2.4 130 μmol/m2Air, 3% CO2 NA 6.5–7.5 
Noguchi et al. (2017)  MPBR SADS TOC (0.66) 85.4 23.1 Chlorella vulgaris NIES-2170 HF, 0.1 μm 0.085 NA 24 h/9 h (6 W/m2– 21.7 7.0–8.0 
Lee et al. (2018)  MPBR RISEW TOC (26.5) 41.6 0.7 Botryococcus braunii PVDF, 0.5 μm 2.81·10−3 2.4; 3; 4 220 μE/m26 L/min 25 NA 
González-Camejo et al. (2018)  MB-MPBR RSEW COD (72) 40–80 4–10 Native microalgae-bacteria consortia (dominated by Chlorella sp. and Scenedesmus sp.) PVDF, HF, 0.03 μm 2 × 3.4 NA Outdoor (119–357 μmol/m2 s) +artificial LED lamps (300 μmol/m2 s) 0.09 vvm, CO2 (pH control) 16–28 7.5 
Azizi et al. (2021a)  MPBR SSEW –  (83)  (9) Chlorella vulgaris  0.45 μm NA 18 24 h/0 h; 16 h/8 h; 12 h/12 h (100; 300 μmol/m2 s) Air, 0.04% CO2 25 NA 
Derakhshan et al. (2018a)  B-MB-MPBR RSEW COD (59) NOx (11)  (10) Native microalgae-bacteria consortia PVDF, HF, 0.1 μm 0.043 20 12 h/12 h (100 μmol/m2 s) 4–5 L/min, 0.04% CO2 26 NA 
Gao et al. (2021)  MPBR RSEW TOC (107) 48.4 4.23 Chlorella pyrenoidosa FACHB-5 PVDF, HF, 0.1 μm 0.05 NA 82.4–90.6 μmol/m240 mL/min, CO2 30 7.3 
Novoa et al. (2020)  MPBR SSEW – 65 10 Chlorella vulgaris UTEX 259 PVDF, HF, 0.018 μm NA 10 130 μmol/m230 L/h 25 7.0–8.0 
Solmaz & Işık (2019)a, 2019bMB-MPBR RSEW BOD (12) 5.2 0.6 Native microalgae-bacteria consortia PVDF, HF, 0.45 μm NA 20 12 h/12 h (6,000 lux) 5 L/min 23 7.5–9.0 
Lau et al. (2019)  SB-MPBR RSEW NA 20–21 2.25 Staurastrum sp. PVDF, FS, 0.16 μm 0.02 40 1,000 lux 3.5 L/min 20 NA 
Wang et al. (2020)  O-MPBR SSEW Glucose (50) NH4Cl (30) K2HPO4 (21.4) + KH2PO4 (10.6) Chlorella vulgaris UTEX 395, Scenedesmus sp. HTB1 HF 2.3 NA 16 h/8 h (100 μE/m2 s) 20% CO2/N2 (pH control) 20 NA 
Solmaz & Işık (2020)  MB-MPBR SSEW COD (32.9) 18.0 8.8 Microalgae-bacteria consortia PVDF, HF, 0.45 μm NA 20 12 h/12 h (6,000 lux) 5 L/min 23 6.4–7.5 
Dalaei et al. (2020)  PAnMBR SPEW COD (430) + Ethanol (200; 300) 43 6.5 Native purple phototrophic bacteria FS, 0.45 μm 0.12 1.9 IR light (3; 1.4 W/m2– 22 7.3 
Dalaei et al. (2019)  PAnMBR SPEW COD (370) + Ethanol (285; 290; 300; 310; 400) 48–56 6.6–8.2 Native purple phototrophic bacteria FS, 0.45 μm 0.12 1.9 IR light (50 W/m2– 22; 11 7.2 
Solmaz & Işik (2019)a, 2019bMB-MPBR SSEW COD (32.9) 18.4 8.8 Microalgae-bacteria consortia PVDF, HF, 0.45 μm NA 20 12 h/12 h (6,000 lux) 5 L/min 23 6.4–8.2 
Keramati et al. (2021)  MPBR RISEW COD (67)  (49)  (36) Chlorella vulgaris FS, 0.4 μm NA 20 LED flashing light (1 Hz; 1,000 Hz) (200 μmol/m2 s) 7 L/min NA 7.0–8.0 
Lee et al. (2020)  MPBR SISEW TOC (530) 183 15 Botryococcus braunii UTEX 2441 PVDF, HF, 0.5 um 2.81·10−4 2.4; 3; 4 24 h/0 h; 12/12 h (150 μmol E/m2 s) NA 30 NA 
Wang et al. (2019)  B-MB-MPBR RIW+ RPEW SCOD (1066) 156.3 9.7 Native microalgae-bacteria consortia PVDF, HF, 0.04 μm NA 200–250 μmol/m24 L/min NA NA 
Zhang et al. (2021)  MB-MPBR SMW COD (440.3) 36.9–46.5 3.8–9.5 Chlorella vulgaris-activated sludge PVDF, FS, 0.1 μm 0.03 6.8; 10.6 8,400 lux 3.75 L/min, 0.05% CO2 26.9 7.3 
Spennati et al. (2021)  MPBR RIW COD (119.3) NA NA Chlorella vulgaris CCAP 211, Arthrospira platensis UTEX 1926 NA NA NA 60 μmol/m2NA 23–25 6.3–7.9 
Cheng et al. (2021)  B-MPBR SIW COD (1025) N-NH3 (98.4) K2HPO4 (25) Rhodopuesdomonas pulstris GO/PSF composite 0.05 24.1 300 lux 1.5 m3/m225 7.5 

aA-MPBR, airlift membrane photobioreactor; B-MB-MPBR, biofilm microalgal-bacterial membrane photobioreactor; MB-MPBR, microalgal-bacterial membrane photobioreactor; MPBR, membrane photobioreactor; O-MPBR, osmotic membrane photobioreactor; PAnMBR, photo-anaerobic membrane bioreactor; SB-MPBR, sequencing batch membrane photobioreactor.

bSSEW, synthetic secondary effluent wastewater; SSALW, synthetic saline wastewater; SPEW, synthetic primary effluent wastewater; SMW, synthetic municipal wastewater; SIW, synthetic industrial wastewater; SISEW, synthetic industrial secondary effluent wastewater; SADS, synthetic anaerobic digestion supernatant; RSEW, real secondary effluent wastewater; RPEW, real primary effluent wastewater; RIW, real industrial wastewater; RISEW, real industrial secondary effluent wastewater.

cBOD, biological oxygen demand; COD, chemical oxygen demand; SCOD, soluble chemical oxygen demand; TOC, total organic carbon.

dL, laboratory; P, pilot.

eDM, dynamic membrane; MF, microfiltration; PSF, polysulfone; PVDF, polyvinylidene fluoride; TFC, thin film composite.

NA, not available.

Table 8

Operating performance of membrane photobioreactors

IDHRT (day)SRT (day)PBR typeBiomass concentration (g/L)Productivity (mg/L day)TN removal (%)TP removal (%)
Gao et al. (2016a)  NA Bubble column 0.44–1.1 42.6 86.1 82.7 
Tan et al. (2014)  – NA Airlift Summer (2.05); winter (0.86); spring (1.97); autumn (1.98) Summer (0.63); winter (0.14); spring (0.33); autumn (0.51) Summer (≈ 83); winter (≈ 40); spring (≈ 67); autumn (≈ 75) Summer (≈ 94); winter (≈56); spring (≈ 96); autumn (≈ 94) 
Marbelia et al. (2014)  1; 1.4; 2; 2.5; 3.3; 5 5xHRT Bubble column 1 (≈ 0.2); 1.4 (≈ 0.3); 2 (≈ 0.6); 2.5 (≈ 0.6); 3.3 (≈ 0.4); 5 (≈ 0.4)a 1 (≈ 0.03); 1.4 (≈ 0.04);2 (≈ 0.06); 2.5 (≈ 0.04); 3.3 (≈ 0.02); 5 (≈ 0.02)a 2 (25); 2.5 (50); 3.3 (80); 5 (100)a 2 (50); 2.5 (50); 3.3 (80); 5 (100)a 
Chitapornpan et al. (2013)  10 NA Rectangular ≈ 1 8.6–12.9 NA NA 
Praveen et al. (2018)  > 200 Bubble column 0.11–5 49.6–167.0 NA NA 
Singh & Thomas (2012)  1.6 NA Flat panel 1.93·106 cells/mL NA  (30–40), (70–80)  (45–70) 
Gao et al. (2016b)  NA Bubble column 1.8 50.7 ≈ 92 ≈ 85 
Praveen & Loh (2016)  2; 3; 4 Without purge Rectangular 30–331 NA N- (36–87), N- (45–81) 75–87 
Zhen-Feng et al. (2011)  0.46–0.9 NA Bubble column 0.14–0.22 NA < 10–46 < 10–100 
Praveen et al. (2016)  1; 1.5; 2 Without purge Rectangular FO (0.28 g/L); MF (0.23 g/L) NA MF (84–97); FO (92–99) MF (28–47); FO (100) 
Sheng et al. (2017)  2; 4; 8 60 Rectangular 2 (0.6 g/L); 4 (0.7 g/L); 8 (1.0 g/L)a 2 (9.7 mg/L day); 4 (11.2 mg/L day); 8(16.7 mg/L day)a 2 (82.8); 4 (96.0); 8 (90.3)a 2 (35.7); 4 (70.0); 8 (44.3)a 
Peng et al. (2020)  1; 2 Without purge Bubble column 1 (1.5 g/L); 2 (1.0 g/L)a 1 (22.0 mg/L day); 2 (14.0 mg/L day)a 1 (98.1); 2 (94.2)a 1 (95.3); 2 (95.6)a 
Shi et al. (2018)  0.5 NA Flat panel 4.5–5.5·106 cell/mL NA NA NA 
Boonchai & Seo (2015)  NA Bubble column 0.2–1.2 55 66.5 94.5 
Luo et al. (2018)  1; 4 9; 18; 30 Flat panel 1/9 (0.47);1/18 (0.91); 1/30 (1.22); 4/30 (0.85)b 1/9 (52);1/18 (51); 1/30 (41); 4/30 (28)b 1/9 (31);1/18 (36); 1/30 (32); 4/30 (84)b 1/9 (30); 1/18 (31); 1/30 (25); 4/30 (80)b 
González-Camejo et al. (2020b)  1.25 2, 2.5; 4.5 Flat panel 2 (≈ 0.350 g VSS/L); 2.5 (0.347 g VSS/L); 4.5 (0.486 g VSS/L)c 2 (136 mg VSS/L day); 2.5 (139 mg VSS/L day); 4.5 (108 mg VSS/L day)c 2 (14.1 mg N/L day); 2.5 (19.7 mg N/L day); 4.5 (14.5 mg N/L day)c NA 
Viruela et al. (2018)  13.1–31.5 g N/day 4.5; 8; 9 Flat panel NA 4.5 (66 mg VSS/L day) 4.5 (7.7 mg N/L day) 4.5 (2.2 mg P/L day) 
Gao et al. (2019)  NA Bubble column Chlorella vulgaris (1.84); Scenedesmus obliquus (1.72) Chlorella vulgaris (96.3); Scenedesmus obliquus (88.8) NA NA 
Chitapornpan et al. (2012)  10 NA Rectangular 1.0 12.9 NA NA 
Lu et al. (2021)  2; 3 10; 20; 40 Bubble column 2 (0.25–0.7); 3 (0.55–0.9)c 2/40 (10.9); 2/20 (28.3); 2/10 (NA); 3/40 (17.1); 3/20 (35.9)b 2/40 (26.2); 2/20 (25.6); 2/10 (34.6); 3/40 (44.6); 3/20 (42.3); 3/10 (40.8)b 2/40 (66,3); 2/20 (53,7); 2/10 (41,7); 3/40 (77.4); 3/20 (69.2); 3/10 (54.5)b 
Derakhshan et al. (2018b)  0.25; 0.5; 1 NA Bubble column NA > 93.7% > 94.4% 
González et al. (2017)  0.21 Without purge Bubble column 1.1 37 39 21 
Derakhshan et al. (2019)  0.17; 0.33; 0.5 NA Bubble column HMPBR (6); MPBR (4) NA HMPBR 0.5 (98); MPBR 0.5 (85) HMPBR 0.5 (98); MPBR 0.5 (98) 
Fortunato et al. (2020)  0.5 NA Bubble column 0.5 NA NA NA 
Choi (2015)  3.4 NA Flat panel 1.12 0.00253 96.4 92.8 
Zhang et al. (2020)  2; 3 20 Bubble column 2 (2.33–2.55); 3 (1.67–2.40)a 2 (116.5–127.5); 3 (83.5–120.0)a 2 (78.6–81.7); 3 (72.5–99.5)a 2 (45.4–99.5); 3 (61.8–99.2)a 
González-Camejo et al. (2020a)  1.25; 1.5 3; 4.5 Flat panel 1.25/3 (531–731 mg VSS/L); 1.5/3 (823 mg VSS/L); 1.5/4.5 (801 mg VSS/L)b 1.5/3 (258 mg VSS/L day)b 80–85 90–99 
Parakh et al. (2020)  5–25 Bubble column 0.6–3.4 (suspension); 16.1–31.1 (settled) 130–260 90–92 99–100 
Honda et al. (2017)  0.33; 1 12 Flat panel 0.314–0.872 26.2–39.0 65.9–70.0 82.5–96.8 
Praveen et al. (2019)  2; 2.5; 5; 10; 20; 30; 50; 350 Bubble column 2 (0.54); 2.5 (0.78); 5 (1.07); 10 (1.97); 20 (1.98); 30 (1.90); 50 (1.86); 350 (2.03)c 50–270 94.9–97.1 71.4–78.2 
Noguchi et al. (2017)  12; 56 Rectangular 0.4 5.58 89 90 
Lee et al. (2018)  3; 4; 5 14;15; 16 Cylindrical 3 (3.5); 4 (3); 5 (3.1) 201 96 85 
González-Camejo et al. (2018)  2; 2,5; 3; 8; 14 4,5; 8; 14 Flat Panel 0.2–0.4 g VSS/L 2.5/4.5 (72 mg VSS/L day) 2.5/4.5 (12.5 m g N/L day) 2.5/4.5 (1.5 mg P/L day) 
Azizi et al. (2021a)  Without purge Flat Plate NA 6–18 40–60 20–45 
Derakhshan et al. (2018b)  0.125; 0.25; 0.5; 1 Without purge Bubble column 0.17–0.73 g SS/g COD NA NA 
Gao et al. (2021)  20 Cylindrical 1.7–1.9 91.1 8.4 mg N/L day 0.9 mg P/L day 
Novoa et al. (2020)  0.5; 1; 1.5 Without purge Bubble column 0.5 (1.7); 1 (1.4); 1.5 (0.8)a 0.5 (90); 1 (61.8)a NA NA 
Solmaz & Işık (2019a, 2019bBubble column 0.110 37 5.55 mg N/L day 0.4 mg P/L day 
Lau et al. (2019)  150 NA 0.6 40–30 50 10 
Wang et al. (2020)  1.7; 3.3; 6.7 9.4; 17.8; 25.3 NA 0.82 NA ≈ 100% ≈ 100% 
Solmaz & Işık (2020)  1; 2; 2.5; 3 Bubble column 0.19–0.35 64–118 30.3–46.8 4.6–5.9 
Dalaei et al. (2020)  0.375; 0.75; 1.5 Flat panel 0.29–1.25 NA 44–86 69–91 
Dalaei et al. (2019)  0.375; 0.75; 1.5 Flat panel 0.4–1.6 NA 40–91 83–89 
Solmaz & Işik (2019a, 2019b2; 3; 6; 12; 24 Bubble column 3 (0.35); 6 (0.35); 12 (0.61); 24 (1.03)c 3 (118); 6 (61); 12 (51); 24 (43)c 3 (5.55 mg/L day); 6 (4.02 mg/L day); 12 (5.05 mg/L day); 24 (4.88 mg/L day)c 3 (0.4 mg/L day); 6 (0.29 mg/L day); 12 (1.36 mg/L day); 24 (1.61 mg/L day)c 
Keramati et al. (2021)  NA NA Flat panel 1.4–2–5 15–30 68–97 47–70 
Lee et al. (2020)  3; 4; 5 15 Rectangular 0.66–2.75 NA 77–72 98–96 
Wang et al. (2019)  15 NA 0.5–1.9 NA 69–99 NA 
Zhang et al. (2021)  2; 3 20 Bubble column 1.6–2.55 NA 72.5–99.5 45.4–99.2 
Spennati et al. (2021)  1.4; 2; 4.6 NA Bubble column 0.82–6.10 39–240 NA NA 
Cheng et al. (2021)  16.7 30 Rectangular NA NA 84 NA 
IDHRT (day)SRT (day)PBR typeBiomass concentration (g/L)Productivity (mg/L day)TN removal (%)TP removal (%)
Gao et al. (2016a)  NA Bubble column 0.44–1.1 42.6 86.1 82.7 
Tan et al. (2014)  – NA Airlift Summer (2.05); winter (0.86); spring (1.97); autumn (1.98) Summer (0.63); winter (0.14); spring (0.33); autumn (0.51) Summer (≈ 83); winter (≈ 40); spring (≈ 67); autumn (≈ 75) Summer (≈ 94); winter (≈56); spring (≈ 96); autumn (≈ 94) 
Marbelia et al. (2014)  1; 1.4; 2; 2.5; 3.3; 5 5xHRT Bubble column 1 (≈ 0.2); 1.4 (≈ 0.3); 2 (≈ 0.6); 2.5 (≈ 0.6); 3.3 (≈ 0.4); 5 (≈ 0.4)a 1 (≈ 0.03); 1.4 (≈ 0.04);2 (≈ 0.06); 2.5 (≈ 0.04); 3.3 (≈ 0.02); 5 (≈ 0.02)a 2 (25); 2.5 (50); 3.3 (80); 5 (100)a 2 (50); 2.5 (50); 3.3 (80); 5 (100)a 
Chitapornpan et al. (2013)  10 NA Rectangular ≈ 1 8.6–12.9 NA NA 
Praveen et al. (2018)  > 200 Bubble column 0.11–5 49.6–167.0 NA NA 
Singh & Thomas (2012)  1.6 NA Flat panel 1.93·106 cells/mL NA  (30–40), (70–80)  (45–70) 
Gao et al. (2016b)  NA Bubble column 1.8 50.7 ≈ 92 ≈ 85 
Praveen & Loh (2016)  2; 3; 4 Without purge Rectangular 30–331 NA N- (36–87), N- (45–81) 75–87 
Zhen-Feng et al. (2011)  0.46–0.9 NA Bubble column 0.14–0.22 NA < 10–46 < 10–100 
Praveen et al. (2016)  1; 1.5; 2 Without purge Rectangular FO (0.28 g/L); MF (0.23 g/L) NA MF (84–97); FO (92–99) MF (28–47); FO (100) 
Sheng et al. (2017)  2; 4; 8 60 Rectangular 2 (0.6 g/L); 4 (0.7 g/L); 8 (1.0 g/L)a 2 (9.7 mg/L day); 4 (11.2 mg/L day); 8(16.7 mg/L day)a 2 (82.8); 4 (96.0); 8 (90.3)a 2 (35.7); 4 (70.0); 8 (44.3)a 
Peng et al. (2020)  1; 2 Without purge Bubble column 1 (1.5 g/L); 2 (1.0 g/L)a 1 (22.0 mg/L day); 2 (14.0 mg/L day)a 1 (98.1); 2 (94.2)a 1 (95.3); 2 (95.6)a 
Shi et al. (2018)  0.5 NA Flat panel 4.5–5.5·106 cell/mL NA NA NA 
Boonchai & Seo (2015)  NA Bubble column 0.2–1.2 55 66.5 94.5 
Luo et al. (2018)  1; 4 9; 18; 30 Flat panel 1/9 (0.47);1/18 (0.91); 1/30 (1.22); 4/30 (0.85)b 1/9 (52);1/18 (51); 1/30 (41); 4/30 (28)b 1/9 (31);1/18 (36); 1/30 (32); 4/30 (84)b 1/9 (30); 1/18 (31); 1/30 (25); 4/30 (80)b 
González-Camejo et al. (2020b)  1.25 2, 2.5; 4.5 Flat panel 2 (≈ 0.350 g VSS/L); 2.5 (0.347 g VSS/L); 4.5 (0.486 g VSS/L)c 2 (136 mg VSS/L day); 2.5 (139 mg VSS/L day); 4.5 (108 mg VSS/L day)c 2 (14.1 mg N/L day); 2.5 (19.7 mg N/L day); 4.5 (14.5 mg N/L day)c NA 
Viruela et al. (2018)  13.1–31.5 g N/day 4.5; 8; 9 Flat panel NA 4.5 (66 mg VSS/L day) 4.5 (7.7 mg N/L day) 4.5 (2.2 mg P/L day) 
Gao et al. (2019)  NA Bubble column Chlorella vulgaris (1.84); Scenedesmus obliquus (1.72) Chlorella vulgaris (96.3); Scenedesmus obliquus (88.8) NA NA 
Chitapornpan et al. (2012)  10 NA Rectangular 1.0 12.9 NA NA 
Lu et al. (2021)  2; 3 10; 20; 40 Bubble column 2 (0.25–0.7); 3 (0.55–0.9)c 2/40 (10.9); 2/20 (28.3); 2/10 (NA); 3/40 (17.1); 3/20 (35.9)b 2/40 (26.2); 2/20 (25.6); 2/10 (34.6); 3/40 (44.6); 3/20 (42.3); 3/10 (40.8)b 2/40 (66,3); 2/20 (53,7); 2/10 (41,7); 3/40 (77.4); 3/20 (69.2); 3/10 (54.5)b 
Derakhshan et al. (2018b)  0.25; 0.5; 1 NA Bubble column NA > 93.7% > 94.4% 
González et al. (2017)  0.21 Without purge Bubble column 1.1 37 39 21 
Derakhshan et al. (2019)  0.17; 0.33; 0.5 NA Bubble column HMPBR (6); MPBR (4) NA HMPBR 0.5 (98); MPBR 0.5 (85) HMPBR 0.5 (98); MPBR 0.5 (98) 
Fortunato et al. (2020)  0.5 NA Bubble column 0.5 NA NA NA 
Choi (2015)  3.4 NA Flat panel 1.12 0.00253 96.4 92.8 
Zhang et al. (2020)  2; 3 20 Bubble column 2 (2.33–2.55); 3 (1.67–2.40)a 2 (116.5–127.5); 3 (83.5–120.0)a 2 (78.6–81.7); 3 (72.5–99.5)a 2 (45.4–99.5); 3 (61.8–99.2)a 
González-Camejo et al. (2020a)  1.25; 1.5 3; 4.5 Flat panel 1.25/3 (531–731 mg VSS/L); 1.5/3 (823 mg VSS/L); 1.5/4.5 (801 mg VSS/L)b 1.5/3 (258 mg VSS/L day)b 80–85 90–99 
Parakh et al. (2020)  5–25 Bubble column 0.6–3.4 (suspension); 16.1–31.1 (settled) 130–260 90–92 99–100 
Honda et al. (2017)  0.33; 1 12 Flat panel 0.314–0.872 26.2–39.0 65.9–70.0 82.5–96.8 
Praveen et al. (2019)  2; 2.5; 5; 10; 20; 30; 50; 350 Bubble column 2 (0.54); 2.5 (0.78); 5 (1.07); 10 (1.97); 20 (1.98); 30 (1.90); 50 (1.86); 350 (2.03)c 50–270 94.9–97.1 71.4–78.2 
Noguchi et al. (2017)  12; 56 Rectangular 0.4 5.58 89 90 
Lee et al. (2018)  3; 4; 5 14;15; 16 Cylindrical 3 (3.5); 4 (3); 5 (3.1) 201 96 85 
González-Camejo et al. (2018)  2; 2,5; 3; 8; 14 4,5; 8; 14 Flat Panel 0.2–0.4 g VSS/L 2.5/4.5 (72 mg VSS/L day) 2.5/4.5 (12.5 m g N/L day) 2.5/4.5 (1.5 mg P/L day) 
Azizi et al. (2021a)  Without purge Flat Plate NA 6–18 40–60 20–45 
Derakhshan et al. (2018b)  0.125; 0.25; 0.5; 1 Without purge Bubble column 0.17–0.73 g SS/g COD NA NA 
Gao et al. (2021)  20 Cylindrical 1.7–1.9 91.1 8.4 mg N/L day 0.9 mg P/L day 
Novoa et al. (2020)  0.5; 1; 1.5 Without purge Bubble column 0.5 (1.7); 1 (1.4); 1.5 (0.8)a 0.5 (90); 1 (61.8)a NA NA 
Solmaz & Işık (2019a, 2019bBubble column 0.110 37 5.55 mg N/L day 0.4 mg P/L day 
Lau et al. (2019)  150 NA 0.6 40–30 50 10 
Wang et al. (2020)  1.7; 3.3; 6.7 9.4; 17.8; 25.3 NA 0.82 NA ≈ 100% ≈ 100% 
Solmaz & Işık (2020)  1; 2; 2.5; 3 Bubble column 0.19–0.35 64–118 30.3–46.8 4.6–5.9 
Dalaei et al. (2020)  0.375; 0.75; 1.5 Flat panel 0.29–1.25 NA 44–86 69–91 
Dalaei et al. (2019)  0.375; 0.75; 1.5 Flat panel 0.4–1.6 NA 40–91 83–89 
Solmaz & Işik (2019a, 2019b2; 3; 6; 12; 24 Bubble column 3 (0.35); 6 (0.35); 12 (0.61); 24 (1.03)c 3 (118); 6 (61); 12 (51); 24 (43)c 3 (5.55 mg/L day); 6 (4.02 mg/L day); 12 (5.05 mg/L day); 24 (4.88 mg/L day)c 3 (0.4 mg/L day); 6 (0.29 mg/L day); 12 (1.36 mg/L day); 24 (1.61 mg/L day)c 
Keramati et al. (2021)  NA NA Flat panel 1.4–2–5 15–30 68–97 47–70 
Lee et al. (2020)  3; 4; 5 15 Rectangular 0.66–2.75 NA 77–72 98–96 
Wang et al. (2019)  15 NA 0.5–1.9 NA 69–99 NA 
Zhang et al. (2021)  2; 3 20 Bubble column 1.6–2.55 NA 72.5–99.5 45.4–99.2 
Spennati et al. (2021)  1.4; 2; 4.6 NA Bubble column 0.82–6.10 39–240 NA NA 
Cheng et al. (2021)  16.7 30 Rectangular NA NA 84 NA 

aData expressed as: HTR (value).

bData expressed as: HTR/SRT (value).

cData expressed as: SRT (value).

Microalgae species and wastewater characteristics

In 70% of the studies, the microalgae C. vulgaris (e.g., Singh & Thomas 2012; Marbelia et al. 2014; Gao et al. 2016a, 2016b; Praveen et al. 2018) is used as a reference species, with some other studies using species such as Scenedesmus obliquus (Gao et al. 2019; Praveen et al. 2019), or Botryococcus braunii (Lee et al. 2018; Lee Jang et al. 2020). The feed is mainly municipal wastewater with a low C/N ratio, such as secondary treatment effluent (60%), synthetic (39%) or real (21%). Additionally, other types of industrial wastewater, usually subjected to secondary treatment (electronic device factory (Zhen-Feng et al. 2011), livestock industry, (Lee et al. 2018; Lee Jang et al. 2020), or whey wastewater (Keramati et al. 2021)), have been studied.

Operating parameters

In relation to the operating parameters of the process, it is to be noted that microfiltration membranes (0.1–0.5 μm) of PVDF or PES, in hollow fibre or flat plate modules, are mostly used. Low filtration fluxes (1.3–12 L/h m2) are generally applied, a parameter that is not usually optimised. Studies usually apply continuous artificial (LED or fluorescent lamps) light or 12 h dark/12 h light photoperiods with PAR values between 60 and 300 μmol/m2 s. Typically, microalgae growth increases with light intensity up to a saturation point. However, beyond this critical saturation threshold, the influence of light intensity on microalgae growth becomes negligible and does not further contribute to the observed growth rate (Wang et al. 2018). In addition, it is widely recognised that the provision of exogenous CO2 through gasification (pure or air-enriched) is often necessary to improve the overall treatment performance (Table 7). Moreover, the introduction of CO2 through gasification also aids in stabilising the pH at optimal levels, typically ranging between 7 and 8 (Table 7). The regulation of carbonation is generally accomplished by controlling the gasification rate or implementing on-demand injection to manage the pH effectively. Additionally, it should be noted that effective membrane fouling control necessitates air scouring, which can be integrated with the carbonation process. Operating temperature is usually 20–25 °C.

Given the essential role of HRT and SRT values on process performance, a significant number of the studies have focused on optimisation of both parameters (Table 8). Generally, HRT determines the degree of nutrient removal. The values studied are usually between 0.5 and 5 days, the optimisation of which depends on the species and feed characteristics (Marbelia et al. 2014; Novoa et al. 2020). It is suggested that at values above 1 day, nitrogen and phosphorus removal rates of more than 65 and 70%, respectively, can be achieved (Boonchai & Seo 2015; Gao et al. 2016b; Honda et al. 2017; Praveen et al. 2019). On the other hand, the SRT, which influences microalgae concentration, is usually studied in the range 2–40 days. Since biomass growth is favoured by higher irradiation in the photobioreactor, the highest productivity is obtained at low SRTs (2–3 days), where lower microalgae concentrations (<1 g/L) are obtained (Praveen et al. 2019; Parakh et al. 2020).

Process configuration

The most studied configuration is MPBR with pure microalgae cultures, which represent 46% of papers (Table 7). These studies focus mainly on the analysis of biomass productivity and nutrient removal capacity (Table 8). The application of MPBRs to real secondary effluents with an appreciable amount of carbonaceous matter (COD = 30–100 mg/L) or untreated wastewater (COD > 400 mg/L) has led to the development of microalgal-bacterial photobioreactors (MB-MPBRs), where synergies can be established between different microorganisms. In these studies, which represent 26% of the analysed works, native consortia of microalgae and bacteria are developed, which adapt to the imposed conditions. In laboratory-scale studies, a 12 h/12 h photoperiod is usually applied, studying the behaviour of this configuration for a range of HRT and SRT conditions (1–3 and 2–24 days, respectively) similar to that studied for MPBRs (Solmaz & Işik 2019a, 2019b; Solmaz & Işık 2020). Comparable results in terms of productivity and nutrient removal have been obtained with this process. In addition, studies at pilot scale and under ambient light and temperature conditions have laid the groundwork for larger-scale design (González et al. 2017; Viruela et al. 2018; González-Camejo et al. 2018, 2020a, 2020b). Sustainable operation with adequate nutrient removal efficiencies has been demonstrated for SRTs of 3–4.5 days and HRTs of 1.25–1.5 days. Also, for these conditions, low membrane fouling can be operated at filtration fluxes of 15 L/h m2 and a specific membrane aeration flow rate of 16–20 Nm3 air/m3 permeate (González-Camejo et al. 2020a).

The rest of the works analysed (28%) studied other configurations of the technology, including biofilm microalgal-bacterial membrane photobioreactor (B-MP-MPBR), osmotic membrane photobioreactor (O-MPBR), and photo-anaerobic membrane bioreactor (PAnMBR). Derakhshan et al. (2018b) and Derakhshan et al. (2019) have shown an appreciable increase in COD and nutrient removal from a B-MP-MPBR over an MP-MPBR. In relation to O-MPBR, although removal efficiencies are higher than those obtained in MPBR, so are the total operating costs, which limits the widespread application of this configuration (Praveen et al. 2016). Finally, in the case of PAnMBR, its application is limited to industrial or domestic wastewater with high organics (Chitapornpan et al. 2012, 2013; González-Camejo et al. 2018; Dalaei et al. 2020). Although preliminary studies show the potential of this configuration, comparable to conventional treatment, more studies are needed on fundamental aspects of the process, such as the influence of the reactor type on light transmissivity, membrane fouling, or methane production (Dalaei et al. 2020).

Research hotspots and tendencies

Many authors have focused their studies on the application of MPBR in wastewater treatment; however, most have been based on laboratory-scale studies (Liu & Hong 2021). Regarding pilot-scale experiments, these have only been conducted in recent years (González-Camejo et al. 2020b; Viruela et al. 2021). It should be noted that outdoor cultivation requires an appropriate photobioreactor design for efficient light utilisation. Tested configurations are bubble columns and flat panels, but other photobioreactors should be explored. Another crucial factor requiring consideration is the biomass concentration, as its augmentation is required for reducing harvesting costs. Nevertheless, according to the literature, elevating the biomass concentration can be challenging due to the occurrence of self-shading effects. Consequently, achieving an optimal photobioreactor configuration that effectively addresses this limitation remains a significant and unresolved challenge.

One of the first research hot spots that can be identified is the great number of studies that evaluate the application of this technology with real wastewater in order to reach sound conclusions on the best cultivation conditions depending on the characteristics of the water entering the photobioreactor. Thus, the pilot phase is a key step for the industrial scaling-up of this technology. However, there are practically no studies dedicated to the analysis of the economic viability of the process under real conditions (Li et al. 2019).

The control of fouling, a parameter that has been found to be key in the operability of the process, is another possible future research area. Some authors consider that the substances excreted by microalgae are the main causes of fouling (Lee et al. 2018), since their composition may contain proteins with a hydrophobic character that can form gel-like structures that block the membrane pores (Novoa et al. 2021). However, despite the importance of this parameter in the operability of the process, there are almost no studies devoted to the continuous analysis of fouling and its characterisation. Even though, some authors have pointed out that understanding how fouling occurs in membranes represents one of the greatest challenges in this technology (Novoa et al. 2021).

Moreover, although some authors have used MPBRs for the treatment of raw wastewater, the feed to the system has been subjected to centrifugation (de Godos et al. 2009b, 2010) or screening and subsequent sedimentation (Godos et al. 2009a). This results in the suspended solids content being greatly reduced and only the soluble fraction of carbon, nitrogen and phosphorus being fed to the system. It is widely known that high organic matter loads are counterproductive for microalgae growth and that the turbidity generated by suspended organic matter causes photoinhibition (Wang et al. 2016). Consequently, some authors point out that this technology has the potential to be used as a secondary or tertiary wastewater treatment (Nagarajan et al. 2020).

Other authors consider that a potential difficulty of this technology is the need for long hydraulic retention times to achieve adequate nutrient removal, namely retention times of 7–10 days as opposed to the less than 1 day that is considered optimal for wastewater treatment (Nagarajan et al. 2020). A long HRT means that land availability for the implementation of MPBRs is an obstacle to overcome. Therefore, exploring alternative design and operational strategies to attain elevated microalgal or microalgal-bacterial concentrations within MPBRs emerges as a promising approach. Such strategies hold the potential to enhance the overall performance of these systems, particularly at low HRT.

On the other hand, the biodegradation and bioadsorption of persistent organic pollutants (POPs) are identified by some authors as a future application of the algae-bacteria consortium that can be developed in a membrane photobioreactor (Chan et al. 2022). Further studies on the degree of assimilation of these pollutants and the concentrations that are inhibitory to biomass growth are required to establish the best operating conditions.

The utilisation of the biomass generated in the operation of a membrane photobioreactor applied to wastewater treatment may also be a field to be developed in the coming years. A prominent constraint associated with MPBRs lies in the comparatively low biomass productivities reported, which significantly diverge from the yields achieved in conventional closed photobioreactors. Moreover, when considering the up-scaling of this process to accommodate large volumes of wastewater, it is suggested to employ open systems, such as raceways or thin-layer reactors. Through the implementation of such systems, the generated biomass can be effectively harvested for diverse applications, encompassing the utilisation of microalgae-based products as biofertilisers for agriculture and as a valuable resource for biofuels production (Silambarasan et al. 2021). Nevertheless, it is essential to acknowledge that the composition of the biomass, and hence its quality, can be influenced by the nature of the wastewater employed. Notably, the presence of heavy metals and a low phosphorus content in the wastewater has been identified as significant drawbacks in this regard (Morillas-España et al. 2022). In addition, biomass pyrolysis is presented as a method to produce biofuels from microalgae (Adeniyi et al. 2018). Some authors have made progress in this direction by establishing a model for the pyrolysis of biomass from the operation of a laboratory-scale membrane photobioreactor (González et al. 2020). In this context, it is crucial to address the issue of high ash content in microalgae to optimise the yields of pyrolysis products (Sotoudehniakarani et al. 2019).

Process modelling is another potential future research trend in this field. Indeed, the use of experimental data to make models that include the wide range of variables that influence the process (lighting, temperature, climate influence, microalgae species, type of feed water, etc.) (Li et al. 2019) can be a great tool to predict behaviour and design facilities in the future.

MPBR applied to wastewater treatment have proven to be a technology that has attracted growing interest in the scientific community in the last 5 years.

  • 1.

    Most publications on the topic have been in the field of Environmental Sciences and the Journal Bioresource Technology is the outlet for most of the articles. China has been the country with the most publications; however, the author who has made the greatest contributions to the topic is Spanish and works at the University of Valencia.

  • 2.

    Temporal analysis of keywords shows the scientific community's increasing interest in the use of this technology for nutrient removal, and the need to control a key parameter, membrane fouling, in order to save costs and improve the operability of the overall process.

  • 3.

    The future of this technology seems to lie in improving operating conditions to increase the nutrient removal performance of the wastewater and in minimising membrane fouling. All these advances should be studied under real conditions, with pilot-scale experiments. In addition, options must be found for the subsequent use of the biomass obtained in the process to improve overall process performance.

  • 4.

    This bibliometric review allows any researcher who is interested in this field, to know the most recent advances and the investigations carried out in the application of MPBR in wastewater treatment.

E. S.-M. wrote the original draft, and rendered support in data curation and editing. E. G. visualised, wrote the review and edited the article. A. F. rendered support in the investigation and data curation. O. D. conceptualised the whole article, developed the methodology, investigated the article, and wrote and reviewed the article.

All relevant data are included in the paper or its Supplementary Information.

The authors declare there is no conflict.

Acién
F. G.
,
Gómez-Serrano
C.
,
Morales-Amaral
M. M.
,
Fernández-Sevilla
J. M.
&
Molina-Grima
E.
2016
Wastewater treatment using microalgae: how realistic a contribution might it be to significant urban wastewater treatment?
Applied Microbiology and Biotechnology
100
(
21
),
9013
9022
.
Adeniyi
O. M.
,
Azimov
U.
&
Burluka
A.
2018
Algae biofuel: current status and future applications
.
Renewable and Sustainable Energy Reviews
90
,
316
335
.
Alcántara
C.
,
Posadas
E.
,
Guieysse
B.
&
Muñoz
R.
2015
Microalgae-based wastewater treatment
.
In: Se-Kwon K (ed.)
Handbook of Microalgae: Biotechnological Advances
.
Academic Press
,
Amsterdam, Netherlands
, pp.
439
455
.
Asano
T.
,
Burton
F. L.
,
Leverenz
H. L.
,
Tsuchihashi
R.
&
Tchobanoglous
G.
2007
Water Reuse: Issues, Technologies, and Applications
.
McGraw Hill
,
New York, NY, USA.
Azizi
S.
,
Bayat
B.
,
Tayebati
H.
,
Hashemi
A.
&
Pajoum Shariati
F.
2021a
Nitrate and phosphate removal from treated wastewater by Chlorella vulgaris under various light regimes within membrane flat plate photobioreactor
.
Environmental Progress and Sustainable Energy
40
(
2
).
Azizi
S.
,
Hashemi
A.
,
Pajoum Shariati
F.
,
Tayebati
H.
,
Keramati
A.
,
Bonakdarpour
B.
&
Mohammad
M. M.
2021b
Effect of different light-dark cycles on the membrane fouling, EPS and SMP production in a novel reciprocal membrane photobioreactor (RMPBR) by C. vulgaris species
.
Journal of Water Process Engineering
43
(
July
),
102256
.
https://doi.org/10.1016/j.jwpe.2021.102256
.
Braun
T.
,
Schubert
A. P.
&
Kostoff
R. N.
2000
Growth and trends of fullerene research as reflected in its journal literature
.
Chemical Reviews
100
(
1
),
23
37
.
Chan
S. S.
,
Khoo
K. S.
,
Chew
K. W.
,
Ling
T. C.
&
Show
P. L.
2022
Recent advances biodegradation and biosorption of organic compounds from wastewater: microalgae-bacteria consortium – a review
.
Bioresource Technology
344
(
PA
),
126159
.
https://doi.org/10.1016/j.biortech.2021.126159
.
Chitapornpan
S.
,
Chiemchaisri
C.
,
Chiemchaisri
W.
,
Honda
R.
&
Yamamoto
K.
2012
Photosynthetic bacteria production from food processing wastewater in sequencing batch and membrane photo-bioreactors
.
Water Science and Technology
65
(
3
),
504
512
.
Chitapornpan
S.
,
Chiemchaisri
C.
,
Chiemchaisri
W.
,
Honda
R.
&
Yamamoto
K.
2013
Organic carbon recovery and photosynthetic bacteria population in an anaerobic membrane photo-bioreactor treating food processing wastewater
.
Bioresource Technology
141
,
65
74
.
Dalaei
P.
,
Bahreini
G.
,
Nakhla
G.
,
Santoro
D.
,
Batstone
D.
&
Hülsen
T.
2020
Municipal wastewater treatment by purple phototropic bacteria at low infrared irradiances using a photo-anaerobic membrane bioreactor
.
Water Research
173
,
115535
.
https://doi.org/10.1016/j.watres.2020.115535
.
de Battisti
F.
&
Salini
S.
2013
Robust analysis of bibliometric data
.
Statistical Methods and Applications
22
(
2
),
269
283
.
de Godos
I.
,
Blanco
S.
,
García-Encina
P. A.
,
Becares
E.
&
Muñoz
R.
2009a
Long-term operation of high rate algal ponds for the bioremediation of piggery wastewaters at high loading rates
.
Bioresource Technology
100
(
19
),
4332
4339
.
http://dx.doi.org/10.1016/j.biortech.2009.04.016
.
de Godos
I.
,
González
C.
,
Becares
E.
,
García-Encina
P. A.
&
Muñozd
R.
2009b
Simultaneous nutrients and carbon removal during pretreated swine slurry degradation in a tubular biofilm photobioreactor
.
Applied Microbiology and Biotechnology
82
(
1
),
187
194
.
de Godos
I.
,
Vargas
V. A.
,
Blanco
S.
,
González
M. C. G.
,
Soto
R.
,
García-Encina
P. A.
,
Becares
E.
&
Muñoz
R.
2010
A comparative evaluation of microalgae for the degradation of piggery wastewater under photosynthetic oxygenation
.
Bioresource Technology
101
(
14
),
5150
5158
.
http://dx.doi.org/10.1016/j.biortech.2010.02.010
.
Delgado Vázquez
Á.
,
Vázquez-Cano
E.
,
Belando Montoro
M. R.
&
López Meneses
E.
2019
Análisis bibliométrico del impacto de la investigación educativa en diversidad funcional y competencia digital: Web of Science y Scopus
.
Aula Abierta
48
(
2
),
147
.
Derakhshan
Z.
,
Mahvi
A. H.
,
Ehrampoush
M. H.
,
Ghaneian
M. T.
,
Yousefinejad
S.
,
Faramarzian
M.
,
Mazloomi
S. M.
,
Dehghani
M.
&
Fallahzadeh
H.
2018a
Evaluation of kenaf fibers as moving bed biofilm carriers in algal membrane photobioreactor
.
Ecotoxicology and Environmental Safety
152
,
1
7
.
Derakhshan
Z.
,
Mahvi
A. H.
,
Ehrampoush
M. H.
,
Mazloomi
S. M.
,
Faramarzian
M.
,
Dehghani
M.
,
Yousefinejad
S.
,
Ghaneian
M. T.
&
Abtahi
S. M.
2018b
Studies on influence of process parameters on simultaneous biodegradation of atrazine and nutrients in aquatic environments by a membrane photobioreactor
.
Environmental Research
161
(
October 2017
),
599
608
.
Díaz
O.
,
Segredo-Morales
E.
,
Figueira
A.
&
González
E.
2022
Research trends on desalination: zero-liquid discharge of brine (ZLD)
.
Desalination and Water Treatment
273
.
Ding
M.
&
Zeng
H.
2022
A bibliometric analysis of research progress in sulfate-rich wastewater pollution control technology
.
Ecotoxicology and Environmental Safety
238
,
113626
.
Elsevier
2020
Content Coverage Guide. Scopus, 1–24. Available from: https://www.elsevier.com/__data/assets/pdf_file/0007/69451/Scopus_ContentCoverage_Guide_WEB.pdf (accessed 22 July 2021)
.
Fallahi
A.
,
Rezvani
F.
,
Asgharnejad
H.
,
Khorshidi
E.
,
Hajinajaf
N.
&
Higgins
B.
2021
Interactions of microalgae-bacteria consortia for nutrient removal from wastewater: a review
.
Chemosphere
272
,
129878
.
Gao
F.
,
Li
C.
,
Yang
Z. H.
,
Zeng
G. M.
,
Feng
L. J.
,
Liu
J. Z.
,
Liu
M.
&
Cai
H. W.
2016a
Continuous microalgae cultivation in aquaculture wastewater by a membrane photobioreactor for biomass production and nutrients removal
.
Ecological Engineering
92
,
55
61
.
http://dx.doi.org/10.1016/j.ecoleng.2016.03.046
.
Gao
F.
,
Li
C.
,
Yang
Z. H.
,
Zeng
G. M.
,
Mu
J.
,
Liu
M.
&
Cui
W.
2016b
Removal of nutrients, organic matter, and metal from domestic secondary effluent through microalgae cultivation in a membrane photobioreactor
.
Journal of Chemical Technology and Biotechnology
91
(
10
),
2713
2719
.
González
E.
,
Díaz
O.
,
Ruigómez
I.
,
de Vera
C. R. R.
,
Rodríguez-Gómez
L. E. E.
,
Rodríguez-Sevilla
J.
&
Vera
L.
2017
Photosynthetic bacteria-based membrane bioreactor as post-treatment of an anaerobic membrane bioreactor effluent
.
Bioresource Technology
239
,
528
532
.
González
E.
,
García
M. F.
,
Asensio
I. A.
,
Díaz
O.
,
Vera
L.
&
González Díaz
E.
2020
Analysis of the pyrolysis kinetics of wastewater-fed microalgal biomass by a parallel order-based reaction model
.
Energy Sources, Part A: Recovery, Utilization and Environmental Effects
00
(
00
),
1
14
.
González-Camejo
J.
,
Aparicio
S.
,
Jiménez-Benítez
A.
,
Pachés
M.
,
Ruano
M. V.
,
Borrás
L.
,
Barat
R.
&
Seco
A.
2020a
Improving membrane photobioreactor performance by reducing light path: operating conditions and key performance indicators
.
Water Research
172
,
115518
.
González-Camejo
J.
,
Montero
P.
,
Aparicio
S.
,
Ruano
M. V.
,
Borrás
L.
,
Seco
A.
&
Barat
R.
2020b
Nitrite inhibition of microalgae induced by the competition between microalgae and nitrifying bacteria
.
Water Research
172
,
115499
.
Honda
R.
,
Teraoka
Y.
,
Noguchi
M.
&
Yang
S.
2017
Optimization of hydraulic retention time and biomass concentration in microalgae biomass production from treated sewage with a membrane photobioreactor
.
Journal of Water and Environment Technology
15
(
1
),
1
11
.
https://www.jstage.jst.go.jp/article/jwet/15/1/15_15-085/_article
.
Huang
K. X.
,
Vadiveloo
A.
,
Zhou
J. L.
,
Yang
L.
,
Chen
D. Z.
&
Gao
F.
2023
Integrated culture and harvest systems for improved microalgal biomass production and wastewater treatment
.
Bioresource Technology
376
,
128941
.
Kumar
A.
,
Yuan
X.
,
Sahu
A. K.
,
Ergas
S. J.
,
Van Langenhove
H.
&
Dewulf
J.
2010
A hollow fiber membrane photo-bioreactor for CO2 sequestration from combustion gas coupled with wastewater treatment: a process engineering approach
.
Journal of Chemical Technology and Biotechnology
85
(
3
),
387
394
.
Lau
A. K. S.
,
Bilad
M. R.
,
Osman
N. B.
,
Marbelia
L.
,
Putra
Z. A.
,
Nordin
N. A. H. M.
,
Wirzal
M. D. H.
,
Jaafar
J.
&
Khan
A. L.
2019
Sequencing batch membrane photobioreactor for simultaneous cultivation of aquaculture feed and polishing of real secondary effluent
.
Journal of Water Process Engineering
29
,
100779
.
Lee
J.-C. J. C.
,
Baek
K.
&
Kim
H.-W. H. W.
2018
Semi-continuous operation and fouling characteristics of submerged membrane photobioreactor (SMPBR) for tertiary treatment of livestock wastewater
.
Journal of Cleaner Production
180
,
244
251
.
https://doi.org/10.1016/j.jclepro.2018.01.159
.
Lee
J. C.
,
Jang
J. K.
&
Kim
H. W.
2020
Sulfonamide degradation and metabolite characterization in submerged membrane photobioreactors for livestock excreta treatment
.
Chemosphere
261
,
127604
.
https://doi.org/10.1016/j.chemosphere.2020.127604
.
Li
K.
,
Liu
Q.
,
Fang
F.
,
Luo
R.
,
Lu
Q.
,
Zhou
W.
,
Huo
S.
,
Cheng
P.
,
Liu
J.
,
Addy
M.
,
Chen
P.
,
Chen
D.
&
Ruan
R.
2019
Microalgae-based wastewater treatment for nutrients recovery: a review
.
Bioresource Technology
291
(
July
),
121934
.
https://doi.org/10.1016/j.biortech.2019.121934
.
Liao
Y.
,
Bokhary
A.
,
Maleki
E.
&
Liao
B.
2018
A review of membrane fouling and its control in algal-related membrane processes
.
Bioresource Technology
264
,
343
358
.
Luo
Y.
,
Le-Clech
P.
&
Henderson
R. K.
2017
Simultaneous microalgae cultivation and wastewater treatment in submerged membrane photobioreactors: a review
.
Algal Research
24
,
425
437
.
http://dx.doi.org/10.1016/j.algal.2016.10.026
.
Malériat
J. P.
,
Jaouen
P.
,
Rossignol
N.
,
Schlumpf
J. P.
&
Quemeneur
F.
2000
Influence of alginates adsorption on properties of ultrafiltration and microfiltration organic membranes
.
Revue des Sciences de l'Eau
13
(
3
),
269
287
.
Mao
G.
,
Hu
H.
,
Liu
X.
,
Crittenden
J.
&
Huang
N.
2021
A bibliometric analysis of industrial wastewater treatments from 1998 to 2019
.
Environmental Pollution
275
,
115785
.
Marbelia
L.
,
Bilad
M. R.
,
Passaris
I.
,
Discart
V.
,
Vandamme
D.
,
Beuckels
A.
,
Muylaert
K.
&
Vankelecom
I. F. J.
2014
Membrane photobioreactors for integrated microalgae cultivation and nutrient remediation of membrane bioreactors effluent
.
Bioresource Technology
163
,
228
235
.
http://dx.doi.org/10.1016/j.biortech.2014.04.012
.
Morillas-España
A.
,
Lafarga
T.
,
Sánchez-Zurano
A.
,
Acién-Fernández
F. G.
&
González-López
C.
2022
Microalgae based wastewater treatment coupled to the production of high value agricultural products: current needs and challenges
.
Chemosphere
291
,
132968
.
Nagarajan
D.
,
Lee
D. J.
,
Chen
C. Y.
&
Chang
J. S.
2020
Resource recovery from wastewaters using microalgae-based approaches: a circular bioeconomy perspective
.
Bioresource Technology
302
(
December 2019
),
122817
.
Noguchi
M.
,
Hashimoto
C.
,
Honda
R.
,
Teraoka
Y.
,
Yang
S.
,
Ninomiya
K.
&
Takahashi
K.
2017
Utilization of anaerobic digestion supernatant as a nutrient source in microalgal biomass production with a membrane photobioreactor
.
Journal of Water and Environment Technology
15
(
6
),
199
206
.
Novoa
A. F.
,
Fortunato
L.
,
Rehman
Z. U.
&
Leiknes
T. O.
2020
Evaluating the effect of hydraulic retention time on fouling development and biomass characteristics in an algal membrane photobioreactor treating a secondary wastewater effluent
.
Bioresource Technology
309
(
January
),
123348
.
https://doi.org/10.1016/j.biortech.2020.123348
.
Novoa
A. F.
,
Vrouwenvelder
J. S.
&
Fortunato
L.
2021
Membrane fouling in algal separation processes: a review of influencing factors and mechanisms
.
Frontiers in Chemical Engineering
3
(
May
),
1
18
.
Peng
Y. Y.
,
Gao
F.
,
Yang
H. L.
,
Wu
H. W. J.
,
Li
C.
,
Lu
M. M.
&
Yang
Z. Y.
2020
Simultaneous removal of nutrient and sulfonamides from marine aquaculture wastewater by concentrated and attached cultivation of Chlorella vulgaris in an algal biofilm membrane photobioreactor (BF-MPBR)
.
Science of the Total Environment
725
,
138524
.
https://doi.org/10.1016/j.scitotenv.2020.138524
.
Praveen
P.
,
Heng
J. Y. P.
&
Loh
K. C.
2016
Tertiary wastewater treatment in membrane photobioreactor using microalgae: comparison of forward osmosis & microfiltration
.
Bioresource Technology
222
,
448
457
.
http://dx.doi.org/10.1016/j.biortech.2016.09.124
.
Praveen
P.
,
Guo
Y.
,
Kang
H.
,
Lefebvre
C.
&
Loh
K.-C. K. C.
2018
Enhancing microalgae cultivation in anaerobic digestate through nitrification
.
Chemical Engineering Journal
354
(
August
),
905
912
.
https://doi.org/10.1016/j.cej.2018.08.099
.
Praveen
P.
,
Xiao
W.
,
Lamba
B.
&
Loh
K. C.
2019
Low-retention operation to enhance biomass productivity in an algal membrane photobioreactor
.
Algal Research
40
(
March
),
101487
.
https://doi.org/10.1016/j.algal.2019.101487
.
Price
D. D. S.
1976
A general theory of bibliometric and other cumulative advantage processes
.
Journal of the American Society for Information Science
27
(
5
),
292
306
.
Pritchard
A.
1969
Statistical bibliography or bibliometrics
.
Journal of Documentation
4
(
25
),
348
349
.
Ruiz-Martinez
A.
,
Martin Garcia
N.
,
Romero
I.
,
Seco
A.
&
Ferrer
J.
2012
Microalgae cultivation in wastewater: nutrient removal from anaerobic membrane bioreactor effluent
.
Bioresource Technology
126
,
247
253
.
Shi
X.
,
Yeap
T. S.
,
Huang
S.
,
Chen
J.
&
Ng
H. Y.
2018
Pretreatment of saline antibiotic wastewater using marine microalga
.
Bioresource Technology
258
,
240
246
.
Singh
G.
&
Thomas
P. B.
2012
Nutrient removal from membrane bioreactor permeate using microalgae and in a microalgae membrane photoreactor
.
Bioresource Technology
117
,
80
85
.
http://dx.doi.org/10.1016/j.biortech.2012.03.125
.
Sirohi
R.
,
Kumar Pandey
A.
,
Ranganathan
P.
,
Singh
S.
,
Udayan
A.
,
Kumar Awasthi
M.
,
Hoang
A. T.
,
Chilakamarry
C. R.
,
Kim
S. H.
&
Sim
S. J.
2022
Design and applications of photobioreactors – a review
.
Bioresource Technology
349
,
126858
.
Solmaz
A.
&
Işık
M.
2020
Optimization of membrane photobioreactor; the effect of hydraulic retention time on biomass production and nutrient removal by mixed microalgae culture
.
Biomass and Bioenergy
142
(
October
),
105809
.
Sotoudehniakarani
F.
,
Alayat
A.
&
McDonald
A. G.
2019
Characterization and comparison of pyrolysis products from fast pyrolysis of commercial Chlorella vulgaris and cultivated microalgae
.
Journal of Analytical and Applied Pyrolysis
139
,
258
273
.
Viruela
A.
,
Robles
Á.
,
Durán
F.
,
Ruano
M. V.
,
Barat
R.
,
Ferrer
J.
&
Seco
A.
2018
Performance of an outdoor membrane photobioreactor for resource recovery from anaerobically treated sewage
.
Journal of Cleaner Production
178
,
665
674
.
Viruela
A.
,
Aparicio
S.
,
Robles
Á.
,
Borrás Falomir
L.
,
Serralta
J.
,
Seco
A.
&
Ferrer
J.
2021
Kinetic modeling of autotrophic microalgae mainline processes for sewage treatment in phosphorus-replete and -deplete culture conditions
.
Science of the Total Environment
797
,
149165
.
Vo
H. N. P.
,
Ngo
H. H.
,
Guo
W.
,
Nguyen
T. M. H.
,
Liu
Y.
,
Liu
Y.
,
Nguyen
D. D.
&
Chang
S. W.
2019
A critical review on designs and applications of microalgae-based photobioreactors for pollutants treatment
.
Science of the Total Environment
651
,
1549
1568
.
Wallin
J. A.
2005
Bibliometric methods: pitfalls and possibilities
.
Basic and Clinical Pharmacology and Toxicology
97
(
5
),
261
275
.
Wang
S. K.
,
Stiles
A. R.
,
Guo
C.
&
Liu
C. Z.
2014
Microalgae cultivation in photobioreactors: an overview of light characteristics
.
Engineering in Life Sciences
14
(
6
),
550
559
.
Wang
Y.
,
Ho
S. H.
,
Cheng
C. L.
,
Guo
W. Q.
,
Nagarajan
D.
,
Ren
N. Q.
,
Lee
D. J.
&
Chang
J. S.
2016
Perspectives on the feasibility of using microalgae for industrial wastewater treatment
.
Bioresource Technology
222
,
485
497
.
Wang
M.
,
Keeley
R.
,
Zalivina
N.
,
Halfhide
T.
,
Scott
K.
,
Zhang
Q.
,
van der Steen
P.
&
Ergas
S. J.
2018
Advances in algal-prokaryotic wastewater treatment: a review of nitrogen transformations, reactor configurations and molecular tools
.
Journal of Environmental Management
217
,
845
857
.
Wang
Z.
,
Lee
Y. Y.
,
Scherr
D.
,
Senger
R. S.
,
Li
Y.
&
He
Z.
2020
Mitigating nutrient accumulation with microalgal growth towards enhanced nutrient removal and biomass production in an osmotic photobioreactor
.
Water Research
182
,
116038
.
https://doi.org/10.1016/j.watres.2020.116038 (Accessed July 18, 2022)
.
Zapata-Sierra
A.
,
Cascajares
M.
,
Alcayde
A.
&
Manzano-Agugliaro
F.
2022
Worldwide research trends on desalination
.
Desalination
519
(
May 2021
),
115305
.
https://doi.org/10.1016/j.desal.2021.115305
.
Zhang
M.
,
Leung
K. T.
,
Lin
H.
&
Liao
B.
2020
The biological performance of a novel microalgal-bacterial membrane photobioreactor: effects of HRT and N/P ratio
.
Chemosphere
261
,
128199
.
Zhang
M.
,
Leung
K.-T.
,
Lin
H.
&
Liao
B.
2021
Membrane fouling in a microalgal-bacterial membrane photobioreactor: effects of P-availability controlled by N:P ratio
.
Chemosphere
282
,
131015
.
Zhao
Z.
,
Muylaert
K.
&
Vankelecom
I. F. J.
2023
Applying membrane technology in microalgae industry: a comprehensive review
.
Renewable and Sustainable Energy Reviews
172
,
113041
.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).