Graphitic carbon nitride (g-C3N4) is a widely studied visible-light-active photocatalyst for low cost, non-toxicity, and facile synthesis. Nonetheless, its photocatalytic efficiency is below par, due to fast recombination of charge carriers, low surface area, and insufficient visible light absorption. Thus, the research on the modification of g-C3N4 targeting at enhanced photocatalytic performance has attracted extensive interest. A considerable amount of review articles have been published on the modification of g-C3N4 for applications. However, limited effort has been specially contributed to providing an overview and comparison on available modification strategies for improved photocatalytic activity of g-C3N4-based catalysts in antibiotics removal. There has been no attempt on the comparison of photocatalytic performances in antibiotics removal between modified g-C3N4 and other known catalysts. To address these, our study reviewed strategies that have been reported to modify g-C3N4, including metal/non-metal doping, defect tuning, structural engineering, heterostructure formation, etc. as well as compared their performances for antibiotics removal. The heterostructure formation was the most widely studied and promising route to modify g-C3N4 with superior activity. As compared to other known photocatalysts, the heterojunction g-C3N4 showed competitive performances in degradation of selected antibiotics. Related mechanisms were discussed, and finally, we revealed current challenges in practical application.

  • Photocatalysis has been explored as an effective way to remove antibiotics.

  • g-C3N4 shows advantageous features for photocatalysis.

  • Modification of g-C3N4 improves photocatalytic performance.

  • Heterostructure formation is a promising modification route to modify g-C3N4.

  • Challenges and future perspectives in photocatalytic reaction for antibiotics removal were discussed.

Antibiotics are metabolites originally derived from organic sources, including microorganisms, animals, and plants, which exhibit antimicrobial activities (Chen et al. 2020a). They have been widely applied to treat bacterial diseases and prevent infection in animals and humans, or to stimulate growth in animals (Yi et al. 2019). These drugs are not completely utilized in the bodies of animals and humans. Approximately 10–90% of the administered antibiotics are released into the environment through their urine and feces (Kaur et al. 2021). Meanwhile, a significant amount of antibiotics is discharged into the ecosystem during the production and unfitting disposal of drugs. Wastewater from hospitals and pharmaceutical industries is another significant source. Antibiotics have now been widely seen in sewage, drinking water sources, groundwater, food, soil, and surface water. Antibiotics pollution is associated with the growth of bacteria-resistant organisms, noxiousness to aquariums, genotoxicity, and disruption of the endocrine system (Kaur et al. 2021). The presence of antibiotics in the aquatic systems results in the formation of antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs) (Xiong et al. 2019). There is a high possibility of transfer of ARB and ARGs to humans, which has been identified by the World Health Organization as the most significant public health distress of the century (Zarei-Baygi et al. 2019).

Currently, conventional centralized and decentralized wastewater treatment systems are being used to treat wastewater before discharge or reuse. However, they are not designed for effective and sufficient removal of antibiotics and their residues; thereby, their efficiency in removing antibiotics, which possess high solubility and stability, is far from satisfactory. Studies have reported high concentrations of antibiotics at the hot spots and surroundings of conventional centralized wastewater treatment plants (WWTPs) (Yi et al. 2019). Traces of antibiotics were even detected in waterways significantly far away from the plants' discharge points (Watkinson et al. 2009). Despite the low concentration of antibiotics observed, concerns remain on their antagonistic effect on the aquatic ecosystems and their long-term effect on human health. The effluent from WWTPs has been arguably identified as the main source of antibiotics in the environment (Yi et al. 2019; Shi et al. 2020). On the other side, the level of decentralized wastewater treatment normally decides the effluent disposal and use, such as soil absorption, spray or drip irrigation. The direct reuse and application of treated effluent from decentralized wastewater treatment systems with inadequate removal of antibiotics and residues may transfer those contaminants to surface water, groundwater, and soil.

There is globally a rise in the consumption of growth enhancers and antibiotics, which is attributed to two key factors namely the teeming world population and the increase in the demand for protein sourced from animals. The ineffective antibiotic removal using conventional centralized and decentralized wastewater treatment systems poses challenges and limitations on the discharge and reuse of treated effluent. Till now, researchers have devoted significant effort to developing a cost-effective, eco-friendly, highly efficient, and simple process for antibiotic removal from wastewater. Photocatalysis has been recognized as one of the appropriate methods, which could be potential enhancement to traditional methods in wastewater treatment and remediation, and then significantly reduce the release of antibiotics into the environment after wastewater disposal or reuse. So far, a wide range of photocatalyst materials have been investigated for use in reaction to remove antibiotics.

Graphitic carbon nitride (g-C3N4) has become the most researched non-metal photocatalyst for remediation of organic pollutants, due to its abundance in nature, visible light response, eco-friendliness, good stability, facile synthesis, and low cost (Martha et al. 2013; Wang et al. 2018a). Notably, the cost of g-C3N4 is mainly associated with the use of low-cost nitrogen-based raw materials, such as thiourea, urea, and melamine, along with the simple preparation (Wang et al. 2020). Table 1 compares the unit price of commercially available g-C3N4 with some of commercial photocatalysts in the market and several reported photocatalysts in the literature. g-C3N4 shows competitively low cost among various types of selected catalyst. Moreover, several studies have proven the low toxicity of pristine and modified g-C3N4-based photocatalysts (Duan et al. 2020; Li et al. 2020a; Abdel-Moniem et al. 2021; Ravichandran et al. 2024). For instance, Li and colleagues reported negligible toxicity of Er-doped g-C3N4 on pakchoi seeds and Escherichia coli (Li et al. 2020a). Similarly, the in vitro toxicity test of g-C3N4 and bismuth sulfide-modified g-C3N4 showed that they were non-toxic, environmentally safe, and could be adopted as green catalyst materials for wastewater treatment (Abdel-Moniem et al. 2021). More importantly, the photoactivity of g-C3N4 under visible light, which occupies around 45% of the solar spectrum, makes it more attractive than many traditional photocatalyst materials (e.g. TiO2), which are only active under ultraviolet (UV) light. Though g-C3N4 has shown remarkable potential for the removal of organic pollutants, its performance is limited by high recombination of photogenerated electron-holes carriers, poor visible light absorption (<450 nm) and low specific surface area (Wu et al. 2012; Feng et al. 2017). To improve the performance of g-C3N4, various methods, i.e. elemental doping, morphology controlling, defect engineering, heterojunction construction, etc., have been utilized to modify g-C3N4. The development of visible-light-active modified g-C3N4 photocatalysts toward high-performance degradation of organics has become one of the research hotspots.

Table 1

Comparison of prices between the commercial g-C3N4 and other photocatalysts which are commercially available or reported in the literature

CatalystPrice (USD)Unit price (USD/g)SynthesisReference
g-C3N4 96.99/100 g 0.97 - (commercial) Nanografi  
TiO2 222.00/100 g 2.22 Hydrolysis (commercial) Acsmaterial  
TiO2 154.05–88.33/100 g 1.54–0.88 - (commercial) Nanografi  
WO3 235.92–80.79/100 g 2.36–0.81 - (commercial) Nanografi  
TiO2 314.40–46.37/100 g 3.14–0.46 - (commercial) Sigmaaldrich  
ZnO 177.01–47.23/100 g 1.77–0.47 - (commercial) Sigmaaldrich  
WO3 116.25–83.96/100 g 1.16–0.84 - (commercial) Sigmaaldrich  
SnO2 82.56/100 g 0.83 - (commercial) Sigmaaldrich  
SnO2 801.04/1 kg 0.80 Microwave Salsabila & Dani Nandiyanto (2020)  
TiO2 16/1 kg 0.02 Liquid-phase Ragadhita et al. (2019)  
CatalystPrice (USD)Unit price (USD/g)SynthesisReference
g-C3N4 96.99/100 g 0.97 - (commercial) Nanografi  
TiO2 222.00/100 g 2.22 Hydrolysis (commercial) Acsmaterial  
TiO2 154.05–88.33/100 g 1.54–0.88 - (commercial) Nanografi  
WO3 235.92–80.79/100 g 2.36–0.81 - (commercial) Nanografi  
TiO2 314.40–46.37/100 g 3.14–0.46 - (commercial) Sigmaaldrich  
ZnO 177.01–47.23/100 g 1.77–0.47 - (commercial) Sigmaaldrich  
WO3 116.25–83.96/100 g 1.16–0.84 - (commercial) Sigmaaldrich  
SnO2 82.56/100 g 0.83 - (commercial) Sigmaaldrich  
SnO2 801.04/1 kg 0.80 Microwave Salsabila & Dani Nandiyanto (2020)  
TiO2 16/1 kg 0.02 Liquid-phase Ragadhita et al. (2019)  

After our literature search, we found there have been more than 1,200 review articles published between 2018 and 2023 relating to the keywords ‘g-C3N4’ and ‘graphitic carbon nitride’ in various photocatalytic applications, including hydrogen generation, carbon dioxide reduction and organic degradation. Figure 1(a) shows the co-operative network analysis of countries with their corresponding citations, showing these review papers are from 42 countries, with the highest number of research activities from the People's Republic of China. The visualization network map of co-occurrence and authors keywords (Figure 1(b)) suggests research hotspots on applications of g-C3N4-related materials in hydrogen production, CO2 reduction, and water purification. The keywords that have attracted significant attention in those articles include defect engineering, heterojunction, doping, mechanisms, modification, and synthesis. Among those review articles, only a few of them emphasized the synthesis, modification, and application of g-C3N4-based materials for photocatalytic degradation of antibiotics. However, those reviews only focused on several selected groups of g-C3N4-based photocatalysts (such as Z- and S-scheme or noble metal doped) or selected type of antibiotic removal (e.g. tetracycline) (Pattanayak et al. 2022; Pattanayak et al. 2023; Wang et al. 2023a; Hemmati-Eslamlu & Habibi-Yangjeh 2024). We also noted, in addition to g-C3N4, there are many other types of interesting catalysts (i.e. modified TiO2, ZnO, and WO3) exhibiting high photocatalytic activities. Hence, there is a need to compare them and the modified g-C3N4 photocatalysts in photocatalytic degradation of antibiotics, considering operation conditions. This has been neglected in many of the relevant review publications. Based on the keywords shown in the bibliometric analysis (Figure 1), our paper targeted at these research gaps and in turn provided our insights into challenges and future perspectives to the researchers in this field.
Figure 1

(a) Co-operative network analysis of countries with their corresponding citations (inset); (b) visualization network map of co-occurrence and author keywords with their corresponding top 10 most frequent keywords (inset) for review articles on g-C3N4 in 2018–2023. (Data obtained from Web of Science on April 8, 2024.)

Figure 1

(a) Co-operative network analysis of countries with their corresponding citations (inset); (b) visualization network map of co-occurrence and author keywords with their corresponding top 10 most frequent keywords (inset) for review articles on g-C3N4 in 2018–2023. (Data obtained from Web of Science on April 8, 2024.)

Close modal

This review reported recent progress in the synthesis and modification of g-C3N4 for the photocatalytic degradation of various antibiotic pollutants. In addition, the photocatalytic performances of g-C3N4-based materials were compared with other known photocatalysts in the literature. Photocatalytic reaction mechanisms were revealed to explain their enhanced performances. Limitations and challenges on scale-up synthesis, material design, intermediate analysis and economic viability were also discussed at the end to highlight future research opportunities.

Currently, there are two main approaches to manage water and wastewater treatment, centralized and decentralized treatment systems. The centralized systems are based on the collection and treatment of large volumes of wastewater and disposal of treated wastewater into the environment, typically through large-diameter pipes (Massoud et al. 2009). This method of wastewater treatment is widely practiced in developed and some of developing countries (Zhang et al. 2014). Significant advantages of such systems include less environmental impact, efficient treatment processes, and compliance with regulations for large residential areas (Massoud et al. 2009). However, they are not commonly practiced in many developing countries, especially with a low population density; due to the high cost of operation and management, reliance on treatment technologies, and need for skilled personnel in operation and maintenance (Massoud et al. 2009). On the other side, the decentralized systems are to collect, treat and dispose water near or at the point of generation; which allows flexibility in management and design by adopting onsite and cluster treatment technologies for specific sites (Battilani et al. 2010). Challenges associated with construction sites, including impervious soils, high groundwater table, and shallow bedrock, are avoided in the installation of decentralized systems (Massoud et al. 2009). Despite the fact that the decentralized systems show reliability and cost-effectiveness in providing a long-term wastewater treatment solution for small communities, there exist problems, e.g. selection of appropriate technologies, compliance with discharge standards and regulations, optimization of infrastructure setting and maintenance (Libralato et al. 2012). Treatments in neither conventional centralized nor decentralized systems effectively remove recalcitrant organic pollutants, including antibiotics. Therefore, there is a need to design and incorporate an effective advanced process.

There have been different treatment processes investigated by researchers to remove antibiotics from wastewater (in Table 2) (Ahmed et al. 2021). Each of these methods has its advantages and disadvantages. For instance, physical methods involving the use of adsorbents or flocculants can be relatively easy to incorporate into the existing wastewater treatment to increase the removal of antibiotics. However, the design, optimization and production of high-performance materials could limit the wide application of this approach (Dehghani et al. 2023). Bioremediation is known to be low-cost, but the efficiency is insufficient due to poor performance in the degradation of organic pollutants, which are toxic to the microorganisms employed (Shah & Shah 2020). The removal rate by microorganisms is relatively low and this process is time-consuming, such as when using constructed wetland method. Though chemical methods have been demonstrated to be effective in the elimination of pollutants, the formation of undesirable by products is a key setback to this method (Ahmed et al. 2021). Integration or combination of two different methods might potentially boost removal by taking advantages advantage of each; but increases complexity in operation and optimization (Köktaş et al. 2023).

Table 2

Comparison of different treatment methods for antibiotic removal from water

MethodExamplesAdvantagesDisadvantagesReference
Biological 
  • Bacteria: Pseudomonas sp.H117, manganese oxidizing bacteria

  • Microalgae: Chlorella pyrenoidosa

 
  • Inexpensive and green.

  • Good removal of antibiotics.

 
  • Effectiveness for a narrow range of antibiotics.

  • Slow removal rate.

 
Lu et al. (2020), Cai et al. (2020)  
Physical 
  • Adsorption

  • Flocculation

 
  • Low initial capital investment.

  • Easy separation of sludge.

  • Little production of by-products.

 
  • Limited removal efficiency.

  • Difficulty in the disposal of sludge or collection/recovery.

 
Dehghani et al. (2023), Gai et al. (2020); Alnajrani & Alsager (2020); Ajala et al. (2023)  
Chemical 
  • Ozonation

  • Chlorination

 
  • Direct and swift elimination of antibiotics.

  • Simple to operate.

 
  • Release of undesirable by-products.

  • High operational cost.

 
Stange et al. (2019), Zheng et al. (2010)  
Membrane separation 
  • Nanofiltration

  • Reverse osmosis

  • Forward osmosis

  • Electrodialysis

 
  • No thermal energy or chemicals required.

  • Removal of toxic metal ions.

 
  • Fouling: regular cleaning and maintenance.

  • High cost on replacement of fouled membranes.

 
Bódalo-Santoyo et al. (2004)  
Constructed wetland 
  • Surface flow wetlands

  • Subsurface flow wetlands

 
  • Ecological innocuousness.

  • Effective removal of antibiotics.

 
  • Extended treatment period.

  • Inability to deal with high pressure and varying loads of water.

 
Tsihrintzis (2017), Chen et al. (2019)  
Electrochemical 
  • Electrocoagulation

  • Electro-oxidation

 
  • Eco-friendliness and technological maturity.

  • Fast and effective removal of colloids, solids, and charged particles.

 
  • Ineffectiveness in degradation and mineralization of organics.

  • Low removal of some refractory antibiotics.

 
Yan et al. (2024)  
Advanced oxidation 
  • Photocatalysis

  • Photo-Fenton

  • Fenton

 
  • High performance in organic degradation.

  • Effective approach capable of degrading and mineralizing organics.

 
  • Production of oxidation intermediates and by-products.

  • High operating and maintenance costs.

 
Li et al. (2023a)  
Integrated 
  • Combination of above methods

 
  • Enhanced removal of antibiotics by taking advantages from each process.

 
  • Optimization and complexity of intergraded system.

 
Köktaş et al. (2023), Hassan et al. (2020), Wu & Hu (2021)  
MethodExamplesAdvantagesDisadvantagesReference
Biological 
  • Bacteria: Pseudomonas sp.H117, manganese oxidizing bacteria

  • Microalgae: Chlorella pyrenoidosa

 
  • Inexpensive and green.

  • Good removal of antibiotics.

 
  • Effectiveness for a narrow range of antibiotics.

  • Slow removal rate.

 
Lu et al. (2020), Cai et al. (2020)  
Physical 
  • Adsorption

  • Flocculation

 
  • Low initial capital investment.

  • Easy separation of sludge.

  • Little production of by-products.

 
  • Limited removal efficiency.

  • Difficulty in the disposal of sludge or collection/recovery.

 
Dehghani et al. (2023), Gai et al. (2020); Alnajrani & Alsager (2020); Ajala et al. (2023)  
Chemical 
  • Ozonation

  • Chlorination

 
  • Direct and swift elimination of antibiotics.

  • Simple to operate.

 
  • Release of undesirable by-products.

  • High operational cost.

 
Stange et al. (2019), Zheng et al. (2010)  
Membrane separation 
  • Nanofiltration

  • Reverse osmosis

  • Forward osmosis

  • Electrodialysis

 
  • No thermal energy or chemicals required.

  • Removal of toxic metal ions.

 
  • Fouling: regular cleaning and maintenance.

  • High cost on replacement of fouled membranes.

 
Bódalo-Santoyo et al. (2004)  
Constructed wetland 
  • Surface flow wetlands

  • Subsurface flow wetlands

 
  • Ecological innocuousness.

  • Effective removal of antibiotics.

 
  • Extended treatment period.

  • Inability to deal with high pressure and varying loads of water.

 
Tsihrintzis (2017), Chen et al. (2019)  
Electrochemical 
  • Electrocoagulation

  • Electro-oxidation

 
  • Eco-friendliness and technological maturity.

  • Fast and effective removal of colloids, solids, and charged particles.

 
  • Ineffectiveness in degradation and mineralization of organics.

  • Low removal of some refractory antibiotics.

 
Yan et al. (2024)  
Advanced oxidation 
  • Photocatalysis

  • Photo-Fenton

  • Fenton

 
  • High performance in organic degradation.

  • Effective approach capable of degrading and mineralizing organics.

 
  • Production of oxidation intermediates and by-products.

  • High operating and maintenance costs.

 
Li et al. (2023a)  
Integrated 
  • Combination of above methods

 
  • Enhanced removal of antibiotics by taking advantages from each process.

 
  • Optimization and complexity of intergraded system.

 
Köktaş et al. (2023), Hassan et al. (2020), Wu & Hu (2021)  

Recently, to circumvent these limitations inherent to the above methods, researchers have been exploring other approaches. Photocatalysis, as one of the advanced oxidation processes (AOPs), has shown to be promising for the degradation of persistent or toxic organic pollutants, with advantageous features of high removal efficiency, mild reaction conditions, reduced use of harsh chemicals, potential complete mineralization of pollutants and eco-friendliness. Hence, it has been considered a potential enhancement to traditional wastewater treatment and remediation methods. Traditional semiconductors, such as TiO2, have been studied for use as photocatalysts; however, many semiconductor photocatalysts can be activated only by UV (constituting about 5% of the solar spectrum). Consequently, the search for alternative photocatalysts with good photo-response in the visible region of the electromagnetic spectrum has received considerable interest. Graphitic carbon nitride (g-C3N4) is among the most researched non-metal semiconductors with good catalytic activity under visible light. Additionally, its easy synthesis, unique structure, good stability, and low cost have further attracted our research interests.

In our literature search, despite some attractive advantageous features as discussed above, we noted that most of photocatalytic reactions and associated photocatalysts (including g-C3N4) are still under study. It requires continuous effort to fully optimize material design and understand reaction mechanisms, toward potential optimization of industry-scale production, utilization, and associated costs. There is also a lack of toxicity analysis and quantification of intermediates during photocatalytic reactions.

Typically, the preparation of g-C3N4 involves thermal condensation of nitrogen-containing precursors (e.g. melamine, cyanamide, urea, thiourea, and dicyanamide). Its resultant structure, yield and performance vary depending on the precursor selection and the reaction conditions (Reddy et al. 2019). For instance, as compared with the use of melamine and cyanamide precursors, the g-C3N4 derived from urea exhibited a higher degree of polymerization, a larger surface area and a smaller amount of hydrogen bonds; thereby faster charge transfer between interlayers and more effective photocatalytic degradation of organic pollutant were observed (Lan et al. 2017). However, we noted that the g-C3N4 obtained from urea showed a poor yield (<5%) (Lan et al. 2017). The basic structure units of g-C3N4 are present in two main forms, namely, s-triazine (C3N3) and tris-s-triazine (C6N7), as depicted in Figure 2 (Ong et al. 2016). Theoretically, tris-s-triazine (C6N7) has been demonstrated to be more stable and, as such, widely recognized as the main building unit for g-C3N4 in studies (Zhang et al. 2021). So far, researchers have devoted great effort to exploring the application of g-C3N4 in various fields, including energy production, gas storage, and pollution control (Xu et al. 2018a).
Figure 2

(a) Triazine and (b) tri-s-triazine structure of g-C3N4 (Ong et al. 2016).

Figure 2

(a) Triazine and (b) tri-s-triazine structure of g-C3N4 (Ong et al. 2016).

Close modal
The structure of g-C3N4 with a band gap, conduction band edge, and valence band edge of 2.7, −1.3, and 1.4 eV, respectively, makes it a suitable photocatalyst to degrade organic pollutants in the visible region of the solar spectrum (Wen et al. 2017). However, the pristine g-C3N4 has several disadvantages, such as high photogenerated electron-hole recombination, small specific surface area, and limited visible light absorption. Several strategies, e.g. metal doping, non-metal doping, co-doping, metal decoration, heterostructure formation, defect tuning and structural engineering, have been demonstrated to modify g-C3N4 toward improved photocatalytic performance. Figure 3(a) shows the number of annual publications related to the modification of g-C3N4 by different strategies (e.g. heterostructure formation, metal doping, non-metal doping, defect turning, etc.) for photocatalytic degradation of antibiotics in 2018–2023. The heterostructure formation is the most widely studied approach (in Figure 3(b)). Based on that, Tables 3 and 4 summarize a comparative assessment of modified g-C3N4 catalysts, which were prepared using various strategies in the recent literature, for antibiotic removal in visible-light-driven photocatalytic reaction. Especially Table 4 highlights the g-C3N4-based catalysts with heterostructure formation. By comparing Tables 3 and 4, the heterostructure formation, co-doping and defect tuning have resulted in the formation of g-C3N4 composites with outstanding performances.
Table 3

Performances of g-C3N4-based catalysts which were synthesized using various modification strategies, including doping, metal NPs decoration, defect tuning and structural engineering, in photocatalytic degradation of antibiotics

CatalystsModificationSurface area (m2/g)Band gap (eV)Antibiotics (mg/L)Light source (lamp)Performance fold over pristine g-C3N4Reference
Er (III)-g-C3N4 Metal doping 38.9 2.40 TC (25) 35 W Xenon (–) 1.7 Li et al. (2020a)  
K/OH/Fe-g-C3N4 Metal doping – – TC (20) 300 W Xenon (–) 3.0 Xu et al. (2018b)  
Ba-g-C3N4 Metal doping 11.41 2.56 TC (20) 150 W Xenon (λ > 400 nm) 2.8 Bui et al. (2020)  
Sm-g-C3N4 Metal doping 25.9 2.50 TYL (25) 35 W Xenon 2.0 Li et al. (2020b)  
La-g-C3N4 Metal doping 124.1 2.63 TC (10) 18 UV (λ: 400–800 nm) 5.6 Tuna & Simsek (2020)  
C-g-C3N4 Non-metal doping – 2.71 TC (30) 30 W LED (λ: 410–760 nm) 1.4 Shi et al. (2021a)  
N-g-C3N4 Non-metal doping 74.79 2.54 TC (10) 300 W Xenon (λ > 420 nm) 2.1 Longbo Jian & Yuan (2019)  
S-g-C3N4 Non-metal doping 118 2.78 TC (20) 300 W Xenon (λ > 420 nm) Jiang et al. (2022)  
Cl-g-C3N4 Non-metal doping 114.4 2.70 TC (10) 300 Xenon (λ > 420 nm) 2.4 Guo et al. (2019)  
O-g-C3N4 Non-metal doping – 2.58 SMR (10) 500 W Xenon (λ > 420 nm) 10.9 Yao et al. (2023)  
Ag-g-C3N4 Metal NPs decoration 48.5 2.46 OTC (30) 300 W Xenon (λ > 420 nm) 98.7 Viet et al. (2019)  
Ag/g-C3N4 Metal NPs decoration 58.4 – TC (20) 300 W Xenon (λ > 420 nm) 3.0 Ren et al. (2020)  
Ag/g-C3N4 Metal NPs decoration – 2.72 SMX (25) 300 W Xenon (λ > 400 nm) 7.1 Song et al. (2018a)  
Bi/α-Bi2O3/g-C3N4 Metal NPs decoration – – TC (10) 300 W Xenon (λ > 400 nm) 2.1 Chen et al. (2017)  
B/Eu-g-C3N4 Co-doping 55.14 2.83 TC (20) 400 W Halogen (–) 2.1 Guo et al. (2021)  
P/Mo-g-C3N4 Co-doping – 2.37 TC (10) 300 Xenon (λ > 420 nm) 3.3 Xu et al. (2022)  
S/Gd-g-C3N4 Co-doping 25.2 2.44 SMT (10) 500 Xenon (λ > 420 nm) 12.8 Zhou et al. (2020a)  
B/Na-g-C3N4 Co-doping 97.73 2.88 TC (–) 10 W LED (λ > 420 nm) 113.6 Chi et al. (2022)  
P/O-g-C3N4 Co-doping 50.7 2.30 ENFX (10) 350 W Xenon (λ > 420 nm) 6.2 Huang et al. (2019)  
S/P-g-C3N4 Co-doping 25.87 2.67 TC (10) 300 W Xenon (λ ≥ 420 nm) 5.9 Jiang et al. (2017)  
Cu/O-g-C3N4 Co-doping 135.8 2.28 LEVO (15) 300 W Xenon (λ > 420 nm) 6.2 Li et al. (2019a)  
EGCN Defect tuning – 2.70 TC (20) 50 W LED (–) 3.3 Ghosh et al. (2021)  
N-deficient g-C3N4 Defect tuning 83.08 2.26 TC (10) 30 W LED (λ = 410–760 nm) 2.95 Sun et al. (2021)  
C, N-deficient g-C3N4 Defect tuning 44.66 2.52 TC (20) 300 W Xenon (λ > 400 nm) 45.9 Zhan et al. (2023)  
C-dot@ N deficient g-C3N4 Defect tuning – 2.64 CIP (10) 300 W Xenon (λ > 420 nm) 3.5 Zhang et al. (2019a)  
3D g-C3N4 Structural engineering 100 2.55 TC (30) 300 W Xenon (λ > 420 nm) 2.3 Wang et al. (2018b)  
Tubular g-C3N4 Structural engineering 40 2.93 TC (50) 300 W Xenon (λ > 420 nm) 3.6 Wang et al. (2021)  
BTC/TCN Structural engineering 85.1 2.22 OTC (20) 300 W Xenon (λ > 420 nm) 2.43 Zhang et al. (2022a)  
g-C3N4 nanofilm Structural engineering 58.75 1.62 TC (20) 300 Xenon (400 nm < λ > 780 nm) 8.57 Wang et al. (2023b)  
CatalystsModificationSurface area (m2/g)Band gap (eV)Antibiotics (mg/L)Light source (lamp)Performance fold over pristine g-C3N4Reference
Er (III)-g-C3N4 Metal doping 38.9 2.40 TC (25) 35 W Xenon (–) 1.7 Li et al. (2020a)  
K/OH/Fe-g-C3N4 Metal doping – – TC (20) 300 W Xenon (–) 3.0 Xu et al. (2018b)  
Ba-g-C3N4 Metal doping 11.41 2.56 TC (20) 150 W Xenon (λ > 400 nm) 2.8 Bui et al. (2020)  
Sm-g-C3N4 Metal doping 25.9 2.50 TYL (25) 35 W Xenon 2.0 Li et al. (2020b)  
La-g-C3N4 Metal doping 124.1 2.63 TC (10) 18 UV (λ: 400–800 nm) 5.6 Tuna & Simsek (2020)  
C-g-C3N4 Non-metal doping – 2.71 TC (30) 30 W LED (λ: 410–760 nm) 1.4 Shi et al. (2021a)  
N-g-C3N4 Non-metal doping 74.79 2.54 TC (10) 300 W Xenon (λ > 420 nm) 2.1 Longbo Jian & Yuan (2019)  
S-g-C3N4 Non-metal doping 118 2.78 TC (20) 300 W Xenon (λ > 420 nm) Jiang et al. (2022)  
Cl-g-C3N4 Non-metal doping 114.4 2.70 TC (10) 300 Xenon (λ > 420 nm) 2.4 Guo et al. (2019)  
O-g-C3N4 Non-metal doping – 2.58 SMR (10) 500 W Xenon (λ > 420 nm) 10.9 Yao et al. (2023)  
Ag-g-C3N4 Metal NPs decoration 48.5 2.46 OTC (30) 300 W Xenon (λ > 420 nm) 98.7 Viet et al. (2019)  
Ag/g-C3N4 Metal NPs decoration 58.4 – TC (20) 300 W Xenon (λ > 420 nm) 3.0 Ren et al. (2020)  
Ag/g-C3N4 Metal NPs decoration – 2.72 SMX (25) 300 W Xenon (λ > 400 nm) 7.1 Song et al. (2018a)  
Bi/α-Bi2O3/g-C3N4 Metal NPs decoration – – TC (10) 300 W Xenon (λ > 400 nm) 2.1 Chen et al. (2017)  
B/Eu-g-C3N4 Co-doping 55.14 2.83 TC (20) 400 W Halogen (–) 2.1 Guo et al. (2021)  
P/Mo-g-C3N4 Co-doping – 2.37 TC (10) 300 Xenon (λ > 420 nm) 3.3 Xu et al. (2022)  
S/Gd-g-C3N4 Co-doping 25.2 2.44 SMT (10) 500 Xenon (λ > 420 nm) 12.8 Zhou et al. (2020a)  
B/Na-g-C3N4 Co-doping 97.73 2.88 TC (–) 10 W LED (λ > 420 nm) 113.6 Chi et al. (2022)  
P/O-g-C3N4 Co-doping 50.7 2.30 ENFX (10) 350 W Xenon (λ > 420 nm) 6.2 Huang et al. (2019)  
S/P-g-C3N4 Co-doping 25.87 2.67 TC (10) 300 W Xenon (λ ≥ 420 nm) 5.9 Jiang et al. (2017)  
Cu/O-g-C3N4 Co-doping 135.8 2.28 LEVO (15) 300 W Xenon (λ > 420 nm) 6.2 Li et al. (2019a)  
EGCN Defect tuning – 2.70 TC (20) 50 W LED (–) 3.3 Ghosh et al. (2021)  
N-deficient g-C3N4 Defect tuning 83.08 2.26 TC (10) 30 W LED (λ = 410–760 nm) 2.95 Sun et al. (2021)  
C, N-deficient g-C3N4 Defect tuning 44.66 2.52 TC (20) 300 W Xenon (λ > 400 nm) 45.9 Zhan et al. (2023)  
C-dot@ N deficient g-C3N4 Defect tuning – 2.64 CIP (10) 300 W Xenon (λ > 420 nm) 3.5 Zhang et al. (2019a)  
3D g-C3N4 Structural engineering 100 2.55 TC (30) 300 W Xenon (λ > 420 nm) 2.3 Wang et al. (2018b)  
Tubular g-C3N4 Structural engineering 40 2.93 TC (50) 300 W Xenon (λ > 420 nm) 3.6 Wang et al. (2021)  
BTC/TCN Structural engineering 85.1 2.22 OTC (20) 300 W Xenon (λ > 420 nm) 2.43 Zhang et al. (2022a)  
g-C3N4 nanofilm Structural engineering 58.75 1.62 TC (20) 300 Xenon (400 nm < λ > 780 nm) 8.57 Wang et al. (2023b)  

NPs, nanoparticles; EGCN, nitrogen defect engineered 3D macroporous g-C3N4; SMR, sulfamethazine; BTC/TCN, 5-bromo-2-thiophenecarboxaldehyde grafted CN photocatalyst; LEVO, levofloxacin; CIP, ciprofloxacin; ENFX, enrofloxacin; OTC, oxytetracycline; NOR, norfloxacin; SMX, sulfamethoxazole; TYL, tylosin; NPs, nanoparticles; SMT, sulfamethazine.; TC, tetracycline.

Table 4

Performances of g-C3N4-based catalysts, which were synthesized after heterostructure formation, in photocatalytic degradation of antibiotics

CatalystsModificationSurface area (m2/g)Band gap (eV)Antibiotics/ (mg/L)Light source (lamp)Performance fold over pristine g-C3N4Reference
CoP/HCCN Heterostructure formation – 2.87 TC (10) 50 W Xenon (λ > 420 nm) 10.2 Guo et al. (2020)  
S@g-C3N4/B@C3N4 Heterostructure formation 124.2 2.52 CMP (10) 300 W Xenon (λ: 380–780 nm) 10 Kumar et al. (2020)  
N-CQDs/g-C3N4 Heterostructure formation 12.20 2.12 TC (20) 300 W Xenon (λ > 420 nm) 1.2 Chen et al. (2021)  
ZnSnO3/g-C3N4 Heterostructure formation – – TC (10) 300 W Xenon (λ > 420 nm) 9.0 Huang et al. (2020b)  
CN/Na-BiVO4 Heterostructure formation 14.56 – TC (20) 300 W Xenon (λ > 420 nm) 3.1 Kang et al. (2021)  
MoS2/Ag/g-C3N4 Heterostructure formation 43.28 – TC (10) 300 W Xenon (λ > 420 nm) 1.4 Jin et al. (2020)  
Ag/g-C3N4/ZnO Heterostructure formation 34.8 2.82 AMX (40) 300 W Xenon (λ > 420 nm) 9.9 Thang et al. (2021)  
WO3@g-C3N4@MWCNT Heterostructure Formation 390.30 2.84 TC (20) 500 W Halogen (λ : 420 nm) 1.9 Manikandan et al. (2022)  
HDMP–CD-g-C3N4 Heterostructure formation 24 2.61 TC (20) 300 W Xenon (λ : 420 nm) 3.8 Lin et al. (2021)  
g-C3N4/CdS Heterostructure formation – 2.36 Ery (50) 35 W Xenon (λ: 300 – 2,500 nm) 2.5 Li et al. (2019d)  
g-C3N4/BiOBr/CdS Heterostructure formation – – TC (20) 150 W Tungsten (–) 8.9 Perumal et al. (2020)  
Au-g-C3N4-ZnO Heterostructure formation – – TC (50) 300 W Xenon (–) 2.6 Huang et al. (2021)  
CuWO4/g-C3N4 Heterostructure formation – – NOR (10) 2 - Tungsten lamp (250 W) 3.2 Prabavathi et al. (2019)  
S-CDDs/HTCN-C Heterostructure formation 32.98 2.47 TC (20) 300 W Xenon (–) 2.7 Wang et al. (2019)  
Fe3O4-QDs@Co-CN Heterostructure formation 4.9 2.55 – – 4.0 Zhu et al. (2019)  
Cu-doped ZnO/g-C3N4 Heterostructure formation – 2.77 CIP (5) 90 W visible light 2.4 Shen et al. (2022)  
CuWO4/g-C3N4 Heterostructure formation – 2.53 TC (20) 300 W Halogen (–) 7.4 Vinesh et al. (2022)  
BiOI/ECN Heterostructure formation – 2.00 TC (20) 500 W Xenon (λ > 420 nm) 10.0 Liu et al. (2022a)  
2D/3D HCCN/ZFO Heterostructure formation – – TC (30) LED (–) 3.8 Shi et al. (2022)  
CeO2/g-C3N4 Heterostructure formation 132.0 2.64 SMX (0.5) 500 W Xenon (λ > 420 nm) 1.6 Liu et al. (2020)  
BiPO4/rGO/pg-C3N4 Heterostructure formation 6.27 – TC (20) 300 W Xenon (–) 3.3 Xia et al. (2020a)  
La2(MoO4)3/TPCN Heterostructure formation 10.70 3.18 TC (20) Xenon (λ > 420 nm) 3.4 Zhang et al. (2022b)  
g-C3N4/SrTiO3 Heterostructure formation – 2.16 TC (10) – 6.0 Xiao et al. (2020)  
CatalystsModificationSurface area (m2/g)Band gap (eV)Antibiotics/ (mg/L)Light source (lamp)Performance fold over pristine g-C3N4Reference
CoP/HCCN Heterostructure formation – 2.87 TC (10) 50 W Xenon (λ > 420 nm) 10.2 Guo et al. (2020)  
S@g-C3N4/B@C3N4 Heterostructure formation 124.2 2.52 CMP (10) 300 W Xenon (λ: 380–780 nm) 10 Kumar et al. (2020)  
N-CQDs/g-C3N4 Heterostructure formation 12.20 2.12 TC (20) 300 W Xenon (λ > 420 nm) 1.2 Chen et al. (2021)  
ZnSnO3/g-C3N4 Heterostructure formation – – TC (10) 300 W Xenon (λ > 420 nm) 9.0 Huang et al. (2020b)  
CN/Na-BiVO4 Heterostructure formation 14.56 – TC (20) 300 W Xenon (λ > 420 nm) 3.1 Kang et al. (2021)  
MoS2/Ag/g-C3N4 Heterostructure formation 43.28 – TC (10) 300 W Xenon (λ > 420 nm) 1.4 Jin et al. (2020)  
Ag/g-C3N4/ZnO Heterostructure formation 34.8 2.82 AMX (40) 300 W Xenon (λ > 420 nm) 9.9 Thang et al. (2021)  
WO3@g-C3N4@MWCNT Heterostructure Formation 390.30 2.84 TC (20) 500 W Halogen (λ : 420 nm) 1.9 Manikandan et al. (2022)  
HDMP–CD-g-C3N4 Heterostructure formation 24 2.61 TC (20) 300 W Xenon (λ : 420 nm) 3.8 Lin et al. (2021)  
g-C3N4/CdS Heterostructure formation – 2.36 Ery (50) 35 W Xenon (λ: 300 – 2,500 nm) 2.5 Li et al. (2019d)  
g-C3N4/BiOBr/CdS Heterostructure formation – – TC (20) 150 W Tungsten (–) 8.9 Perumal et al. (2020)  
Au-g-C3N4-ZnO Heterostructure formation – – TC (50) 300 W Xenon (–) 2.6 Huang et al. (2021)  
CuWO4/g-C3N4 Heterostructure formation – – NOR (10) 2 - Tungsten lamp (250 W) 3.2 Prabavathi et al. (2019)  
S-CDDs/HTCN-C Heterostructure formation 32.98 2.47 TC (20) 300 W Xenon (–) 2.7 Wang et al. (2019)  
Fe3O4-QDs@Co-CN Heterostructure formation 4.9 2.55 – – 4.0 Zhu et al. (2019)  
Cu-doped ZnO/g-C3N4 Heterostructure formation – 2.77 CIP (5) 90 W visible light 2.4 Shen et al. (2022)  
CuWO4/g-C3N4 Heterostructure formation – 2.53 TC (20) 300 W Halogen (–) 7.4 Vinesh et al. (2022)  
BiOI/ECN Heterostructure formation – 2.00 TC (20) 500 W Xenon (λ > 420 nm) 10.0 Liu et al. (2022a)  
2D/3D HCCN/ZFO Heterostructure formation – – TC (30) LED (–) 3.8 Shi et al. (2022)  
CeO2/g-C3N4 Heterostructure formation 132.0 2.64 SMX (0.5) 500 W Xenon (λ > 420 nm) 1.6 Liu et al. (2020)  
BiPO4/rGO/pg-C3N4 Heterostructure formation 6.27 – TC (20) 300 W Xenon (–) 3.3 Xia et al. (2020a)  
La2(MoO4)3/TPCN Heterostructure formation 10.70 3.18 TC (20) Xenon (λ > 420 nm) 3.4 Zhang et al. (2022b)  
g-C3N4/SrTiO3 Heterostructure formation – 2.16 TC (10) – 6.0 Xiao et al. (2020)  

HCCN, CoP as a co-catalyst modified high-crystalline g-C3N4; HDMP, 2-hydroxy-4,6-dimethylpyrimidine; S-CDDs/HTCN-C, S-doped carbon quantum dots/hollow tubular g-C3N4; BiOI/ECN, bismuth oxyiodide/exfoliated g-C3N4; 2D/3D/HCCN/ZFO, two-dimensional/three-dimensional/high crystalline g-C3N4/yolk-shell ZnF2O4; TPCN, Thiophene-inserted g-C3N4; SMR, sulfamethazine; CIP, ciprofloxacin; NOR, norfloxacin; SMX, sulfamethoxazole; Ery, erythromycin; TC, tetracycline.

Figure 3

(a) Number of annual publications on the utilization of g-C3N4-based catalysts, which were synthesized via various strategies, for photocatalytic degradation of antibiotics; (b) percentage of research papers on the respective modification strategies in 2018–2023. (Data obtained from Web of Science on April 8, 2024.)

Figure 3

(a) Number of annual publications on the utilization of g-C3N4-based catalysts, which were synthesized via various strategies, for photocatalytic degradation of antibiotics; (b) percentage of research papers on the respective modification strategies in 2018–2023. (Data obtained from Web of Science on April 8, 2024.)

Close modal

Doping of metal

Metal doping, using alkali, transition, or rare earth metals, has attained some popularity attributed to its ability to reduce band gap, increase light absorption, improve electron-hole separation and thereby enhance photocatalytic performance (Wang et al. 2018c; Xu et al. 2018b; Ma et al. 2019; Chi et al. 2022). Usually, metal doping was performed using a soluble salt of the metal combined with an amine-based precursor subjected to calcination temperature at around 550 °C (Wang et al. 2018c). Researchers have demonstrated that the doping of metal ions into g-C3N4 after high-temperature calcination led to the opening of heptazine rings and then the formation of defects (Hu et al. 2021). The doped metal defects formed energy levels below the conduction band of g-C3N4, and they were conceived to minimize charge carrier recombination by capturing the photogenerated electrons (Li et al. 2020a). Additionally, the doped metal species, such as Co, uniformly distributed and formed a stable coordination between the electron-rich N atoms cavities of g-C3N4. The obtained catalyst exhibited good stability and reusability along with high reactivity toward pollutants (Li et al. 2020c). K+ was reported to interact with the triazine rings of g-C3N4, causing electron redistribution. Such K doping in g-C3N4 improved free carrier density, enhanced transfer of photogenerated carriers, and minimized recombination of charge carriers (Yan et al. 2020).

Some promising improvement in the photocatalytic activity of metal-doped g-C3N4 toward antibiotic removal has been reported (Bui et al. 2019; Zhu et al. 2021). Bui et al. reported a remarkable increase in the photocatalytic degradation of tetracycline using the Ba (2% loading)-doped g-C3N4 over its pristine form (in Figure 4(b)) (Bui et al. 2019), which was attributed to its narrower band gap, improved surface area, and reduced charge carrier recombination. The photoluminescence (PL) spectra (in Figure 4(a)) revealed a decrease in the intensity of Ba-doped g-C3N4, suggesting a reduction in charge carrier recombination. Of various metals, rare earth metals have attracted special research interests as dopants, due to their unique unfilled 4f orbital and empty 5d orbital, which may act as centers to capture electrons and inhibit carrier recombination toward improved photocatalytic performance of resultant catalysts (Li et al. 2020b). Doping of rare earth metals onto g-C3N4 may also improve the capability of composite catalysts attracting antibiotics onto their surfaces, through the formation of complexes between the f-orbitals of rare earth metals and the functional groups of pollutants (Li et al. 2019b). So far, the key challenges associated with this modification approach include cost implication, metal leaching, and photocorrosion.
Figure 4

(a) Photoluminescence (PL) spectra and (b) photocatalytic performance of Ba-doped g-C3N4 (BCN) and g-C3N4; (c) photocatalytic performance of Au-doped g-C3N4; (d) LSPR effect of Ag NPs deposited on g-C3N4; (e) improved photocatalytic degradation of S-doped g-C3N4/carbon dot samples; (f) photocatalytic reaction mechanisms on metal-doped g-C3N4 (M g-C3N4) and non-metal doped g-C3N4 (NM g-C3N4) (Song et al. 2018b; Bui et al. 2019; Xu et al. 2019; Faisal et al. 2020).

Figure 4

(a) Photoluminescence (PL) spectra and (b) photocatalytic performance of Ba-doped g-C3N4 (BCN) and g-C3N4; (c) photocatalytic performance of Au-doped g-C3N4; (d) LSPR effect of Ag NPs deposited on g-C3N4; (e) improved photocatalytic degradation of S-doped g-C3N4/carbon dot samples; (f) photocatalytic reaction mechanisms on metal-doped g-C3N4 (M g-C3N4) and non-metal doped g-C3N4 (NM g-C3N4) (Song et al. 2018b; Bui et al. 2019; Xu et al. 2019; Faisal et al. 2020).

Close modal

Decoration of metal particles

The decoration of metal particles onto g-C3N4 forms metal-semiconductor interfaces, at which normally Schottky junction builds up (Rawool et al. 2023). The Schottky junction effectively improves the photocatalytic performance of g-C3N4 by minimizing charge recombination (Bai et al. 2022). It was normally carried out via mixing pre-formed g-C3N4 with metal-precursor-containing solution, followed by photo-reduction or chemical reduction (in NaBH4 solution under N2 gas) (Huang et al. 2020a). Noble metals that have been used for this purpose include Pt, Ag, Pd, and Au (Ong et al. 2014; Song et al. 2018b; Faisal et al. 2020). These metals are known to exhibit surface plasmon resonance (SPR) in the visible region. It assists in concentrating incident electromagnetic field, enhancing light absorption, promoting charge carrier generation and then increasing rate of photocatalytic reaction, especially in a nanostructure (Majeed et al. 2022). So far, a few studies have reported the use of noble metal nanoparticles (NPs) decorating g-C3N4, by taking advantages of their nano scale local surface plasmon resonance (LSPR) effect. Their results have proven that those noble metal NPs are effective captors for photogenerated electrons, thereby capturing free electrons, facilitating electron-hole separation, and improving photocatalytic activity of the resultant modified g-C3N4 (Zhang et al. 2018). For example, in Figure 4(c), the Au NPs (1%)-decorated g-C3N4 exhibited a high photodegradation of gemifloxacin mesylate (Faisal et al. 2020). The improved performance was ascribed to the even distribution of small Au NPs on the surface of g-C3N4, which served as captors to facilitate transfer of electrons to the catalyst surface and enhance charge separation. Likewise, Song et al. validated the LSPR effect of Ag NPs promoting the photocatalytic activity of g-C3N4 toward sulfamethoxazole removal (in Figure 4(d)) (Song et al. 2018b). However, one of the major limitations of noble metals is their high cost, which has hindered their commercial application. For this reason, cheaper non-noble metals, such as Bi and Cu, might be used as alternatives (Chen et al. 2017). The loading of bimetallic Ni-Cu NPs onto g-C3N4 resulted in enhanced light absorption, faster charge transfer and more efficient carrier separation; which were associated with the formation of Schottky barrier (Jin & Zhang 2020). Although non-noble metal NPs deposited on g-C3N4 have been demonstrated as an effective strategy minimizing charge carrier recombination and extending its light absorption toward improved photocatalytic activity for hydrogen evolution and dye removal, we noted there has been little study targeting at the photocatalytic degradation of antibiotics from water. Deposition of two or even more different metal particles may provide an opportunity to remarkably boost catalytic activity of resulting composites; however, their stability, durability and reusability should not be overlooked.

Non-metal doping

The doping of g-C3N4 with non-metal species, such as C, N, O, S, P, I, and F, has been proven to reduce photogenerated electron-hole recombination and induce a red shift in visible light absorption (Xing et al. 2018; Starukh & Praus 2020). The conduction band and valence band of g-C3N4 can be tuned to match the redox potential of a photocatalytic reaction. Various methods have been reported for non-metal doping on g-C3N4, including hydrothermal/solvothermal reaction, thermal copolymerization, precipitation, oxidation, thermal condensation, and gas-templating methods (Starukh & Praus 2020). Non-metal doping is to chemically attach or introduce non-metal elements to the heptazine units of g-C3N4. The dopants can form strong covalent bonds to the g-C3N4 backbones by gaining electrons based on their electronegativity (Salim et al. 2019). The framework of non-metal-modified g-C3N4 has been reported to be more easily activated, due to the high polarity of covalent bonds formed between g-C3N4 backbones and non-metal species (Tahereh Mahvelati-Shamsabadi 2020). Some of non-metals, e.g. O, S, and I, could substitute the N atoms in the aromatic triazine ring of g-C3N4 (Chu et al. 2020; Hu et al. 2020a); whilst some, e.g. P and B, selectively replaced the C atoms in the triazine ring (Ran et al. 2015; Chu et al. 2020). Such substitution of C or N led to the generation of defects, which served as electron captors and hence inhibited charge recombination (Chen et al. 2018; Patnaik et al. 2021). The N doping into the g-C3N4 framework was suggested as an effective method to adjust the band gap by introducing defects and forming midgap states (Patnaik et al. 2021). Non-metal dopants would also contribute to greater delocalization of π-conjugated electrons and in turn improve charge mobility (Tahereh Mahvelati-Shamsabadi 2020). It should not be overlooked that the strategy of non-metal doping circumvents the limitations of metal doping, such as photocorrosion and element leaching. The incorporation of non-metal dopants has been seen to alter the physicochemical properties of g-C3N4, including structural, morphological, and optical characteristics (Ismael & Wu 2019).

Penneri et al. reported a remarkable increase in both adsorption and photocatalysis toward efficient degradation of tetracycline using the porous C-doped g-C3N4 granules, which were synthesized via spray drying, as compared to its bulk form (Panneri et al. 2016). The greater photocatalytic activity of porous C-doped g-C3N4 was explained by the C doping creating delocalized π bonds, enlarging surface area, increasing interconnected porous network, enhancing visible light absorption, and reducing exciton recombination. Figure 4(e) shows the work on the utilization of S-doped g-C3N4/carbon dot (S-1–S-8) for photocatalytic degradation of sulfamethoxazole, in comparison with the pure S-doped g-C3N4 (S-0) (Xu et al. 2019). Upon optimization of doping, the observed improvement in the photocatalytic performance was associated with exclusive pore structure, large surface area, improved visible light absorption and reduced charge carrier recombination.

The photocatalytic degradation mechanisms using non-metal-modified g-C3N4 have been explored in several studies. Figure 4(f) shows the most probable location of anions in non-metal doped g-C3N4 (denoted NM g-C3N4). The introduction of dopants formed defects within the structure of g-C3N4 (Ran et al. 2015; Guo et al. 2021). Consequently, the band gap of g-C3N4, which is typically 2.7 eV, was narrowed after non-metal doping. Upon illumination, electrons were excited from the VB to the CB of g-C3N4 composites. If the photogenerated electrons and holes were not properly separated, they recombined again. In the CB, the photogenerated electrons were utilized in a photoreduction reaction, converting O2 to oxygen radical (). In the presence of H2O, the was converted to hydrogen peroxide (H2O2) and a highly oxidizing hydroxyl radical was produced, which was used to decompose antibiotics. On the other hand, the photogenerated holes in the VB decomposed antibiotics into smaller organic compounds and sometimes mineralized them into CO2 and H2O. The improved performances of non-metal doped g-C3N4 composites relative to its pristine form were based on two main factors: (i) the absorption of longer wavelength of visible light due to the presence midgap states and (ii) midgap states as temporary harbor for electrons, thus aiding charge separation (Jiang et al. 2019). Similar mechanisms have also been utilized to explain the enhanced degradation over the g-C3N4-based catalysts after metal doping (metal-doped g-C3N4 denoted as M g-C3N4 in Figure 4(f)).

Co-doping

Recently, the co-doping of two elements into g-C3N4 has gained increasing research interest, relative to mono-doping (Hasija et al. 2019), due to the potential to integrate advantages of various components and hence boost photocatalytic activity of resultant catalyst under their synergistic effect. The co-doping combination can vary from non-metal/non-metal, metal/metal to metal/non-metal. Co-doped g-C3N4 composites benefit from the synergistic effect of two dissimilar dopants, thus improving electron-hole separation, increasing specific surface area, improving charge mobility, creating more active sites and extending light absorption range (Wu et al. 2018; Li et al. 2020d).

Chi et al. synthesized B/Na co-doped porous g-C3N4 nanosheets (Chi et al. 2022), in which B substituted the C atoms to form N-B = N bond and Na ions formed N-Na-N coordination in the CN plane (Figure 5(a)). Under the synergistic effect of porous structure and co-doping, the co-doped porous g-C3N4 presented larger surface area, greater visible light utilization, improved separation, and transfer of carriers, thereby around 80% photocatalytic degradation of tetracycline was achieved in 0.5 h. A novel facile one-pot thermal polymerization method involving the use of urea as a precursor and formic acid and copper nitrate as dopants were employed by Li et al. to synthesize Cu/O co-doped g-C3N4 (Li et al. 2019c). The optimized Cu/O co-doped g-C3N4 displayed a significantly improved photocatalytic efficiency for levofloxacin removal, mainly associated with an increase of visible light absorption, decrease of band gap, enhancement of photogenerated carrier separation and transfer. The C/Ce co-doped g-C3N4, which was prepared by thermal treatment of supramolecular aggregation, exhibited the highest photocurrent density (in Figure 5(b)) and, thus, the best separation and transfer of photogenerated charge carriers (Wu et al. 2020). In this regard, when tested on the degradation of tetracycline, the photocatalytic activity of C/Ce co-doped g-C3N4 was about 2.6 times greater than that of pristine g-C3N4 (in Figure 5(c)).
Figure 5

(a) Scheme showing interstitial and substitutive placement of Na and B; (b) transient photocurrent response plots and (c) photocatalytic degradation performances of C/Ce co-doped g-C3N4, C or Ce-doped g-C3N4 and bulk g-C3N4 (Wu et al. 2020; Chi et al. 2022).

Figure 5

(a) Scheme showing interstitial and substitutive placement of Na and B; (b) transient photocurrent response plots and (c) photocatalytic degradation performances of C/Ce co-doped g-C3N4, C or Ce-doped g-C3N4 and bulk g-C3N4 (Wu et al. 2020; Chi et al. 2022).

Close modal

It should be noted that, some researchers recently considered tri-doping of elements into g-C3N4. For instance, the Fe/Co/O tri-doped g-C3N4 exhibited a rate constant of about 2.67 times that of pristine g-C3N4, for the photocatalytic degradation of tetracycline (Wu et al. 2022). However, limited effort has been contributed to tri-doping of g-C3N4 for photocatalytic degradation of antibiotics. It is necessary to develop more effective and sustainable routes to synthesize co-doped or tri-doped g-C3N4 and then optimize their removal efficiency.

Defect tuning

Defect tuning is effective to regulate the photoelectronic properties of g-C3N4 without introducing new chemical species during synthesis. Defective g-C3N4 was synthesized under high temperature treatment in an inert gas or air. The disruption of periodic arrangement of aromatic triazine unit in g-C3N4 resulted in the formation of carbon or nitrogen defects (Liao et al. 2020). In most cases, defect tuning did not alter the main conjugate structure of photocatalysts (Niu et al. 2014a). The N or C defects (vacancies) can enhance visible light absorption, improve charge separation, and increase active sites on the modified g-C3N4 toward improved photocatalytic performance (Liang et al. 2015, 2020). For instance, Ding and co-workers explored the effect of N vacancies from the uncondensed terminal of NHx in the modified g-C3N4 on its photocatalytic oxidation performance (Ding et al. 2018). The enhanced oxidation potential of N-defective g-C3N4 over its pristine counterpart was credited to the improved visible light absorption and faster charge transfer. However, the relationship between defects and performances of modified g-C3N4 is still yet to be fully understood, especially in antibiotic removal.

Structural engineering

Another promising strategy to boost the photocatalytic performance of g-C3N4 is tuning its morphological properties and textural structures by controlling sizes, shapes, dimensions, and porosity. The tuned g-C3N4 photocatalysts with large specific areas usually exhibited enhanced reaction performance due to the presence of more active sites, increase of electron-hole separation, and decrease of charge carrier recombination, as compared to the bulk counterparts (Kong et al. 2019; Zhang et al. 2019b). Other benefits of morphology tuning include an increase in optical activity and an improvement in pollutant adsorption performance. In addition to the greater surface area, the nanosized g-C3N4 might endow other advantageous features to achieve superior photocatalytic performance, including shorter charge migration length, better solubility, and tunable electronic properties (Chen et al. 2012). For instance, as compared with the bulk counterpart, ultrathin g-C3N4 nanosheets enhanced charge separation and migration to their surfaces, because of their quantum confinement effect (Niu et al. 2014b; Zhang et al. 2015). To date, g-C3N4 with various morphologies have been synthesized and employed in photocatalysis; these include 0D quantum dots (Wang et al. 2014; Wang et al. 2016a), 1D nanowires/nanorods/nanotubes (Gao et al. 2012; Bai et al. 2013; Zhao et al. 2014), 2D nanosheets (Yang et al. 2013; Zhang et al. 2013), and 3D hierarchical structures (Shen et al. 2014).

Different synthetic methods have been adopted for tuning the morphology and structure of g-C3N4 and their related materials, including templating, chemical exfoliation, ultrasonic-assisted liquid exfoliation, and thermal exfoliation; which may be categorized into ‘top-down exfoliation’ and ‘bottom-up assembly of molecular units’ (Dong & Cheng 2015). For example, Guo and co-workers employed a facile bottom-up approach to prepare Cl-doped porous g-C3N4 nanosheets, which displayed about 2.4 times the tetracycline removal compared to the bulk g-C3N4 (Guo et al. 2019). The authors ascribed the enhanced performance to the doping of Cl element, leading to narrower band gap, large specific surface area, more active sites, and greater electron-hole separation. Yang's group developed a two-stage bottom-up method via combining hydrothermal reaction with secondary calcination under N2 gas in a closed environment to synthesize highly crystalline g-C3N4 nanosheets (HCCNNS) with dramatically improved photocatalytic degradation of ciprofloxacin and sulfamethazine (Yang et al. 2021). The increase in photogenerated charge separation and transfer was associated with the thinner and larger lamellar morphology and high crystallinity.

The coupling of g-C3N4 nanosheets with differently structured substances, such as 3D network-like SnIn4S8 spheres, TiO2 microspheres, and WO3 nanorods, might form composites with interesting hierarchical features (Ding et al. 2015; Deng et al. 2016; Liu et al. 2016; Ma et al. 2016). It was also recognized that the use of nanosheets in building heterojunction can largely improve interfacial contact between different components, thus favoring light capturing, charge carrier separation and transfer. For instance, Figure 6(a) shows a core-shell heterojunction Eu-CN@BiVO4, which was obtained through exfoliation of bulk Eu-doped g-C3N4 nanosheets, followed by their subsequent coating on the surface of flower-like BiVO4via sonication impregnation and heating process (Wang et al. 2018d). While the BiVO4 displayed 65% photocatalytic degradation rate of tetracycline, Eu-CN@BiVO4 achieved over 92%. This was attributed to the core-shell heterojunction, which was formed by tightly coating Eu-doped g-C3N4 nanosheets onto flower-like BiVO4, as well as the presence of Eu dopants. Figure 6(b) shows the SEM image of Au/Ni2P/g-C3N4 synthesized via two-step hydrothermal and photoreduction methods (He et al. 2020). The optimized nanocomposite showed an improved removal of levofloxacin hydrochloride (88.23%) as compared to the pristine g-C3N4 (61.26%). To increase catalyst specific surface area and generate more heterojunction interfaces, Liu et al. prepared the composite of MoO3/g-C3N4 by loading 0D MoO3 NPs to 2D g-C3N4 nanosheets (Liu et al. 2021a). The resultant catalyst exhibited 85.9% tetracycline removal, which was approximately 2.3 times higher than the pristine g-C3N4.
Figure 6

(a) Schematic diagram on photocatalytic degradation of tetracycline by Eu-CN@BiVO4 and (b) SEM image of 6.7%Au/0.5%Ni2P/g-C3N4 (He et al.; Wang et al. 2018d).

Figure 6

(a) Schematic diagram on photocatalytic degradation of tetracycline by Eu-CN@BiVO4 and (b) SEM image of 6.7%Au/0.5%Ni2P/g-C3N4 (He et al.; Wang et al. 2018d).

Close modal

Heterostructure formation

Figure 3 shows heterostructure formation as the most researched type of modification strategy to improve the photocatalytic performance of g-C3N4 for antibiotic removal in recent years. The growing interest in this approach is associated with the advantages of heterojunctions, which include: (i) effective spatial separation of charge carriers due to dissimilar semiconductors (Liu et al. 2021b), (ii) improved light harvesting and redox activity (Qin et al. 2019), (iii) fine-tuning of exciton binding and energy levels (Zhou et al. 2020b), and (iv) built-in potential, preventing unwanted electron and hole migration (Zhang et al. 2020). Based on the migration of electrons and holes, the heterostructures can be categorized into Schottky junction, p-n heterojunction, step-scheme (S-scheme) heterojunction, conventional (Type I, II and III) heterojunction and Z-scheme heterojunction (first, second and third generation). Among these, the exploration of Z-scheme heterojunction for antibiotic removal has gained the most attention. Especially the third generation Z-scheme heterojunction (direct Z-scheme heterojunction in Figure 7(a)) shows a direct connection between semiconductors and does not require the use of mediators, thus potentially addressing drawbacks arising from the mediator-containing Z-scheme systems (first and second generation Z-scheme), e.g. poor stability and backward reaction (Yu et al. 2013). The direct Z-scheme is consisting of PS I and PS II, which denote photocatalytic system I and photocatalytic system II, respectively. These two separate systems function simultaneously at the same time. When light of sufficient energy is irradiated on the catalyst, electrons are excited from the VBs of PS-II and PS-I to their respective CBs, while the holes are left behind in their VBs. Subsequently, the photogenerated electrons on PS II move to the VB of PS I, where they are neutralized by holes. Lastly, the redox reactions involving the degradation of antibiotic pollutants take place in hole-rich VB of PS II and electron-rich CB of PS I. The direct Z-scheme g-C3N4-based heterojunctions exhibit advantages, including (i) spatial separation of charge carrier and improved charge transfer and (ii) improved redox potentials due to the strong oxidation potential of PS I and reduction potential of PS II.
Figure 7

(a) Direct Z-scheme consisting of PS I and PS II photocatalytic systems (Ning et al. 2020); (b) TEM image of MoO3/Ag/g-C3N4 (Adhikari et al. 2019); and (c) transient photocurrent response plots of g-C3N4, ZrO2−x NTs and 0.06 CN/ZrO2−x NTs (Chen et al. 2020b).

Figure 7

(a) Direct Z-scheme consisting of PS I and PS II photocatalytic systems (Ning et al. 2020); (b) TEM image of MoO3/Ag/g-C3N4 (Adhikari et al. 2019); and (c) transient photocurrent response plots of g-C3N4, ZrO2−x NTs and 0.06 CN/ZrO2−x NTs (Chen et al. 2020b).

Close modal

Adhikari et al. synthesized a mediator-containing Z-scheme heterostructure, MoO3/Ag/g-C3N4,via simple hydrothermal and borohydride reduction methods, in which the interfacial contact among the three components, Ag, MoO3 and g-C3N4, was displayed in Figure 7(b) (Adhikari et al. 2019). The fast electron transfer between MoO3 and g-C3N4 was mediated by the Ag NPs which located between both. This stable and recyclable photocatalyst removed 89% of tetracycline and 96% of ofloxacin after 100 min visible light photocatalytic reaction. The remarkably enhanced removal as compared with Ag/g-C3N4 and MoO3/Ag/g-C3N4 affirmed the co-operative effects between Ag and MoO3. Yang's group constructed a new direct Z-scheme photocatalytic system – g-C3N4-decorated ZrO2−x nanotubes by using anodic oxidation and subsequent thermal vapor deposition (Chen et al. 2020b). This heterojunction was proven to enhance visible light absorption, faster separation of photogenerated carriers and lower their recombination. Figure 7(c) shows the photocurrent density of optimized heterostructure was about 3.5 and 15 times that of ZrO2−x nanotubes and g-C3N4, respectively. It removed 90.6% tetracycline hydrochloride after 1 h visible light photocatalytic reaction, as compared with only ∼40 and 50% when using g-C3N4 and ZrO2−x nanotubes, respectively. In addition, a novel design of catalyst comprising Bi24O31Cl10 (BOC), MoS2 (MS) and g-C3N4 (CN) was synthesized using impregnation-calcination. The enhancement of tetracycline photocatalytic degradation on CN/MS/BOC was due to the obtained dual Z-scheme ternary heterostructure, which improved visible light absorption, accelerated carrier transfer, hindered electron-hole recombination, and strengthened redox ability (Kang et al. 2020). The tuning of catalyst structural and morphological properties, as well as improvement of interfacial contact between semiconductors in heterojunctions could also result in highly efficient photocatalytic reactions (Yu et al. 2013; Yang et al. 2015).

As can be seen from the above sections, various modification strategies have been explored to improve the properties of g-C3N4, including visible light absorption, generation and separation of charge carriers, and then photocatalytic performances in antibiotic removal. By comparing Tables 3 and 4, the most effective strategies to modify g-C3N4 are heterostructure formation, co-doping, and defect tuning. In particular, the heterostructure formation has attracted greatest research interests as a promising route to modify g-C3N4 for high performance antibiotic removal.

In addition to g-C3N4, there have been some other attractive photocatalyst materials used for antibiotic removal, such as TiO2, ZnO, and WO3. WO3 is a n-type visible-light-driven semiconductor with a bandgap of 2.4–2.8 eV (Fu et al. 2019). TiO2 (Eg = 3.2 eV) and ZnO (Eg = 3.1 eV), which are traditional photocatalyst materials and commercially available in the market, have large bandgaps and thus restrain their uses to UV light (Zeinali Heris et al. 2023). As such, they are commonly modified with other visible-light-active semiconductors to obtain activity in the visible region. Table 5 shows the comparison of g-C3N4-based heterostructures to other composites consisting of TiO2, ZnO, or WO3 in photocatalytic removal of different antibiotics. Taking consideration the different light sources and pollutant concentrations, g-C3N4-based heterostructures are seen to be competitive for removal of different antibiotics, including tetracycline, amoxicillin, ciprofloxacin and sulfamethoxazole.

Table 5

Photocatalytic removal of antibiotics using g-C3N4 heterostructures, as compared to other composites consisting of TiO2, ZnO, and WO3

CatalystPollutantSurface area (m2/g)Band gap (eV)Pollutant concentration (mg/L)Light source (lamp)Removal performance (%)Ref.
N-CQDs/g-C3N4 TC 12.20 2.12 20 300 W Xenon (λ > 420 nm) 90 Chen et al. (2021)  
TiO2/CdS TC 40 2.40 10 300 W Xenon (λ > 420 nm) 95 Luo et al. (2023a)  
2D – MoS2/TiO2 TC – 2.84 10 400 W metal halide 84 Hunge et al. (2022)  
Bi2WO6/TiO2 NT TC 43.7 3.00 10 300 W Xenon (λ > 420 nm) 71.1 Lu et al. (2022)  
CDs/TiO2 TC 55.60 2.00 20 300 W Xenon (λ > 420 nm) 99.9 Xie et al. (2024)  
TiO2/ZnO TC 13.24 – 10 300 W Xenon (λ > 420 nm) 81.6 Zeinali Heris et al. (2023)  
ZnFe2O4/BC/ZnO TC – 1.73 40 300 W Xenon (λ > 400 nm) 85.6 Luo et al. (2023b)  
WO3-ZnO/AC TC 85 – 10 300 W Xenon (λ > 420 nm) 96.5 Mohtaram et al. (2024)  
WO3/Ag3PO4 TC 3.71 2.30 20 300 W Xenon (λ > 400 nm) 96 Pudukudy et al. (2020)  
WO3/Bi2MoO6 TC – – 20 300 W Xenon (λ > 400 nm) 77.3 Li et al. (2019e)  
AgI/WO3 TC 14.37 – 35 300 W Xenon (λ ≥ 420 nm) 75 Wang et al. (2016b)  
WO3/N-CDs TC 65.56 2.79 20 300 W Xenon (λ > 420 nm) 96 Ding et al. (2023)  
CoP/HCCN TC – 2.87 10 50 W Xenon (λ > 420 nm) 96.7 Guo et al. (2020)  
CN/Na-BiVO4 TC 14.56 – 20 300 W Xenon (λ > 420 nm) 98.2 Kang et al. (2021)  
CN-NBM TC 11.86 2.71 10 250 W Xenon (λ > 400 nm) 93.4 Dharman & Oh (2023)  
g-C3N4/ZnO AMX 144.6 – 100 Visible light 95 Sun et al. (2022a)  
SnO2/g-C3N4 AMX 65.2 2.82 10 300 W Xenon (λ > 420 nm) 92.1 Raj et al. & Nivetha (2022)  
Ag/Ag2O/TiO2 AMX 6.6 1.71 20 LED (λ: 455 nm; 11 mW/cm−297.9 Zamani et al. (2022)  
Ag/TiO2/g-C3N4 AMX 59.1 2.5 300 W Xenon (λ > 420 nm) 99 Gao et al. (2020)  
NTP AMX 469.4 2.9 15 UV lamp (11 W) 99.5 Alshandoudi et al. (2023)  
Fe2O3/bentonite/TiO2 AMX 154.2 1.49 25 Hg UV lamp
LED light 
99.9
98.2 
Al-Musawi et al. (2023)  
CuO-ZnO/g-C3N4 AMX 87.3 2.82 60 300 W Xenon (λ: 250 – 1,100 nm) 84 Moradi et al. (2021)  
MIL-53(AI)/ZnO AMX 27.4 2.82 50 300 W metal halide (λ ≤ 500 nm) 78.1 Fawzy et al. (2022)  
p-CuO/n-ZnO AMX 1.3 – 50 Solar irradiation (109 mW/cm270 Belaissa et al. (2016)  
Bi2WO6/nano ZnO AMX – – 20 500 W Xenon (λ > 420 nm) 93.1 Liu et al. (2022b)  
WO3/Ag3VO4 AMX 82.5 – 20 LED (200 V; 30W) >95 Tung et al. (2022)  
CuO/CuS/WO3@PANI AMX 94.3 – 50 4 × 18W Visible
2 × 18 UV 
80 Enesca & Sisman (2023)  
WO3/rGO/AgI Amoxicillin 84.2 – 20 30 W LED 86.1 Thanh Tung et al. (2023)  
Ag/g-C3N4/ZnO Amoxicillin 34.8 2.82 40 300 W Xenon (λ > 420 nm) 41.36 Thang et al. (2021)  
FeGF Amoxicillin 242.7 2.52 90 500 W halogen (λ > 400 nm) < 40 Mirzaei et al. (2019)  
TiO2 nanorods/g-C3N4 CIP – – 60 500 W Xenon (λ > 420 nm) 93.4 Hu et al. (2020b)  
TiO2/g-C3N4/biochar CIP 99.1 2.44 20 250 W metal halide (λ > 400 nm) 89.2 Wang et al. (2022)  
ZnO/g-C3N4 CIP – – 10 30 W Fluorescent bulb 93.8 Van Thuan et al. (2022)  
g-C3Nx/POMs CIP 214 – 20 300 W Xenon (λ > 420 nm) 97.4 He et al. (2020)  
BiOBr/TiO2 CIP 160.8 2.76 25 300 W Xenon (λ > 420 nm) 92.5 Rashid et al. (2019)  
BiVO4/TiO2/RGO CIP 74.3 2.17 10 800 W Xenon (simulated sunlight, 86 mW/cm280.5 Shi et al. (2021b)  
TiO2/Mn3O4 CIP 173 – 10 300 W Xenon (λ > 420 nm) 98.6 Tashkandi et al. (2022a)  
LaFeO3/TiO2 CIP 184 2.74 10 300 W Xenon (λ > 420 nm) 99.9 Tashkandi et al. (2022b)  
Cr2O3/ZnO CIP 1,690 2.40 10 300 W Xenon (λ > 420 nm) 99.9 Mohamed et al. (2021)  
CuO/ZnO CIP 14.4 – 30 Natural light 93 Bano et al. (2023)  
FeTiO3/ZnO CIP – 3.0 10 UV-C (254 nm; 7 mW/m299.9 Núñez-Salas et al. (2021)  
Fe3O4-ZnO-Chitosan/Alginate CIP 1.0 – 10 UV-C 94.8 Roy et al. (2022)  
MWCNT/WO3 CIP 17.9 2.72 10 250 W tungsten (λ > 420 nm) 95 Jeevitha et al. (2022)  
WO3 nanorods /RGO CIP 18.7 2.32 300 W metal halide (λ > 420 nm) 90 Govindaraj et al. (2021)  
FeSA/WO3/BiOBr CIP 70 2.03 20 500 W Xenon (λ > 400 nm) 98.5 Yu et al. (2022)  
Fe3O4/g-C3N4 SMX 11.8 2.36 10 350 W Xenon (λ > 420 nm) 99.2 Zhang et al. (2024)  
Ag3PO4/g-C3N4/BiVO4 SMX – 2.30 20 250 W Xenon (λ ≤ 420 nm) 93.6 Li et al. (2020e)  
g-C3N4/ZnO SMX – – 10 300 W Xenon (λ > 420 nm) 96.9 Sun et al. (2022b)  
Biochar/TiO2 SMX 383 – 10 15 W UV 91 Kim & Kan (2016)  
MCNT/TiO2 SMX 151 – 0.15 Solar simulator (1,000 W/m250 Awfa et al. (2019)  
Bi2O4/TiO2 SMX 43.0 2.46 40 350 W Xenon (λ: 190 – 1,100 nm) 96.5 Ling et al. (2020)  
Zn-TiO2/Biochar SMX 169.1 – 10 50 W Xenon (λ > 420 nm) 81.2 Xie et al. (2019)  
Mn-WO3/LED SMX 7.1 2.0 10 LED (44 W/cm285 Yazdanbakhsh et al. (2020)  
ZnS/WO3 SMX 20.7 2.64 20 Visible light 99.9 Murillo-Sierra et al. (2022)  
WO3/MIL-100(Fe) SMX 325.8 – Visible light 99.9 Shi et al. (2023)  
WO3/UiO-66/rGO SMX 148.2 2.79 20 UV lamp (λ: 365 nm) 99.9 Huong et al. (2024)  
ZnO/Biochar SMX 7.4 3.19 125 W mercury lamp (UV-A) 97 Gonçalves et al. (2020)  
ZnO/Fe2O3 SMX – – 10 300 W Xenon (λ > 420 nm) 95.2 Dhiman et al. (2021)  
Fc/rGO/ZnO SMX 391.4 3.16 20 UV lamp (10 W; λ ≥ 365 nm) > 90 Roy et al. (2023)  
CatalystPollutantSurface area (m2/g)Band gap (eV)Pollutant concentration (mg/L)Light source (lamp)Removal performance (%)Ref.
N-CQDs/g-C3N4 TC 12.20 2.12 20 300 W Xenon (λ > 420 nm) 90 Chen et al. (2021)  
TiO2/CdS TC 40 2.40 10 300 W Xenon (λ > 420 nm) 95 Luo et al. (2023a)  
2D – MoS2/TiO2 TC – 2.84 10 400 W metal halide 84 Hunge et al. (2022)  
Bi2WO6/TiO2 NT TC 43.7 3.00 10 300 W Xenon (λ > 420 nm) 71.1 Lu et al. (2022)  
CDs/TiO2 TC 55.60 2.00 20 300 W Xenon (λ > 420 nm) 99.9 Xie et al. (2024)  
TiO2/ZnO TC 13.24 – 10 300 W Xenon (λ > 420 nm) 81.6 Zeinali Heris et al. (2023)  
ZnFe2O4/BC/ZnO TC – 1.73 40 300 W Xenon (λ > 400 nm) 85.6 Luo et al. (2023b)  
WO3-ZnO/AC TC 85 – 10 300 W Xenon (λ > 420 nm) 96.5 Mohtaram et al. (2024)  
WO3/Ag3PO4 TC 3.71 2.30 20 300 W Xenon (λ > 400 nm) 96 Pudukudy et al. (2020)  
WO3/Bi2MoO6 TC – – 20 300 W Xenon (λ > 400 nm) 77.3 Li et al. (2019e)  
AgI/WO3 TC 14.37 – 35 300 W Xenon (λ ≥ 420 nm) 75 Wang et al. (2016b)  
WO3/N-CDs TC 65.56 2.79 20 300 W Xenon (λ > 420 nm) 96 Ding et al. (2023)  
CoP/HCCN TC – 2.87 10 50 W Xenon (λ > 420 nm) 96.7 Guo et al. (2020)  
CN/Na-BiVO4 TC 14.56 – 20 300 W Xenon (λ > 420 nm) 98.2 Kang et al. (2021)  
CN-NBM TC 11.86 2.71 10 250 W Xenon (λ > 400 nm) 93.4 Dharman & Oh (2023)  
g-C3N4/ZnO AMX 144.6 – 100 Visible light 95 Sun et al. (2022a)  
SnO2/g-C3N4 AMX 65.2 2.82 10 300 W Xenon (λ > 420 nm) 92.1 Raj et al. & Nivetha (2022)  
Ag/Ag2O/TiO2 AMX 6.6 1.71 20 LED (λ: 455 nm; 11 mW/cm−297.9 Zamani et al. (2022)  
Ag/TiO2/g-C3N4 AMX 59.1 2.5 300 W Xenon (λ > 420 nm) 99 Gao et al. (2020)  
NTP AMX 469.4 2.9 15 UV lamp (11 W) 99.5 Alshandoudi et al. (2023)  
Fe2O3/bentonite/TiO2 AMX 154.2 1.49 25 Hg UV lamp
LED light 
99.9
98.2 
Al-Musawi et al. (2023)  
CuO-ZnO/g-C3N4 AMX 87.3 2.82 60 300 W Xenon (λ: 250 – 1,100 nm) 84 Moradi et al. (2021)  
MIL-53(AI)/ZnO AMX 27.4 2.82 50 300 W metal halide (λ ≤ 500 nm) 78.1 Fawzy et al. (2022)  
p-CuO/n-ZnO AMX 1.3 – 50 Solar irradiation (109 mW/cm270 Belaissa et al. (2016)  
Bi2WO6/nano ZnO AMX – – 20 500 W Xenon (λ > 420 nm) 93.1 Liu et al. (2022b)  
WO3/Ag3VO4 AMX 82.5 – 20 LED (200 V; 30W) >95 Tung et al. (2022)  
CuO/CuS/WO3@PANI AMX 94.3 – 50 4 × 18W Visible
2 × 18 UV 
80 Enesca & Sisman (2023)  
WO3/rGO/AgI Amoxicillin 84.2 – 20 30 W LED 86.1 Thanh Tung et al. (2023)  
Ag/g-C3N4/ZnO Amoxicillin 34.8 2.82 40 300 W Xenon (λ > 420 nm) 41.36 Thang et al. (2021)  
FeGF Amoxicillin 242.7 2.52 90 500 W halogen (λ > 400 nm) < 40 Mirzaei et al. (2019)  
TiO2 nanorods/g-C3N4 CIP – – 60 500 W Xenon (λ > 420 nm) 93.4 Hu et al. (2020b)  
TiO2/g-C3N4/biochar CIP 99.1 2.44 20 250 W metal halide (λ > 400 nm) 89.2 Wang et al. (2022)  
ZnO/g-C3N4 CIP – – 10 30 W Fluorescent bulb 93.8 Van Thuan et al. (2022)  
g-C3Nx/POMs CIP 214 – 20 300 W Xenon (λ > 420 nm) 97.4 He et al. (2020)  
BiOBr/TiO2 CIP 160.8 2.76 25 300 W Xenon (λ > 420 nm) 92.5 Rashid et al. (2019)  
BiVO4/TiO2/RGO CIP 74.3 2.17 10 800 W Xenon (simulated sunlight, 86 mW/cm280.5 Shi et al. (2021b)  
TiO2/Mn3O4 CIP 173 – 10 300 W Xenon (λ > 420 nm) 98.6 Tashkandi et al. (2022a)  
LaFeO3/TiO2 CIP 184 2.74 10 300 W Xenon (λ > 420 nm) 99.9 Tashkandi et al. (2022b)  
Cr2O3/ZnO CIP 1,690 2.40 10 300 W Xenon (λ > 420 nm) 99.9 Mohamed et al. (2021)  
CuO/ZnO CIP 14.4 – 30 Natural light 93 Bano et al. (2023)  
FeTiO3/ZnO CIP – 3.0 10 UV-C (254 nm; 7 mW/m299.9 Núñez-Salas et al. (2021)  
Fe3O4-ZnO-Chitosan/Alginate CIP 1.0 – 10 UV-C 94.8 Roy et al. (2022)  
MWCNT/WO3 CIP 17.9 2.72 10 250 W tungsten (λ > 420 nm) 95 Jeevitha et al. (2022)  
WO3 nanorods /RGO CIP 18.7 2.32 300 W metal halide (λ > 420 nm) 90 Govindaraj et al. (2021)  
FeSA/WO3/BiOBr CIP 70 2.03 20 500 W Xenon (λ > 400 nm) 98.5 Yu et al. (2022)  
Fe3O4/g-C3N4 SMX 11.8 2.36 10 350 W Xenon (λ > 420 nm) 99.2 Zhang et al. (2024)  
Ag3PO4/g-C3N4/BiVO4 SMX – 2.30 20 250 W Xenon (λ ≤ 420 nm) 93.6 Li et al. (2020e)  
g-C3N4/ZnO SMX – – 10 300 W Xenon (λ > 420 nm) 96.9 Sun et al. (2022b)  
Biochar/TiO2 SMX 383 – 10 15 W UV 91 Kim & Kan (2016)  
MCNT/TiO2 SMX 151 – 0.15 Solar simulator (1,000 W/m250 Awfa et al. (2019)  
Bi2O4/TiO2 SMX 43.0 2.46 40 350 W Xenon (λ: 190 – 1,100 nm) 96.5 Ling et al. (2020)  
Zn-TiO2/Biochar SMX 169.1 – 10 50 W Xenon (λ > 420 nm) 81.2 Xie et al. (2019)  
Mn-WO3/LED SMX 7.1 2.0 10 LED (44 W/cm285 Yazdanbakhsh et al. (2020)  
ZnS/WO3 SMX 20.7 2.64 20 Visible light 99.9 Murillo-Sierra et al. (2022)  
WO3/MIL-100(Fe) SMX 325.8 – Visible light 99.9 Shi et al. (2023)  
WO3/UiO-66/rGO SMX 148.2 2.79 20 UV lamp (λ: 365 nm) 99.9 Huong et al. (2024)  
ZnO/Biochar SMX 7.4 3.19 125 W mercury lamp (UV-A) 97 Gonçalves et al. (2020)  
ZnO/Fe2O3 SMX – – 10 300 W Xenon (λ > 420 nm) 95.2 Dhiman et al. (2021)  
Fc/rGO/ZnO SMX 391.4 3.16 20 UV lamp (10 W; λ ≥ 365 nm) > 90 Roy et al. (2023)  

MWCNT, multiwalled carbon nanotubes; FeSA, single-atom Fe (FeSA); MCNT, magnetic carbon nanotube; MIL-100(Fe), iron-based catalyst; rGO, reduced graphene oxide; Fc, ferrocene; SMX, sulfamethoxazole; NTP, Titanium dioxide/hydroxyapatite composite; rGO, reduced graphene oxide; CN-NBM, g-C3N4/nitrogen-doped Bi2MiO6; BC, biochar; AC, activated carbon; CDs, carbon dots; HCCN, CoP as a co-catalyst modified high-crystalline g-C3N4; TC, Tetracycline; SMX, sulfamethoxazole; SMT, sulfamethazine; CIP, ciprofloxacin; AMX, Amoxicillin; PANI: Polyaniline.

It is known that photo-induced electrons, holes, and reactive oxygen species are generated and initiate the redox reaction, when a photocatalyst is exposed to light illumination. One of the advantageous features and prime objectives using photocatalytic reaction in the removal of antibiotics is their potential complete mineralization. However, partial mineralization of antibiotics produces various reaction intermediates and by-products, which might be more harmful and toxic than the original pollutants. It should be noted that most of current studies, which are related to photocatalytic degradation of antibiotics, reported degradation efficiency based on the ratio of concentrations of target antibiotic before and after treatment on a UV–vis spectrometer. So far, some effort has been contributed to examination and understanding on the formation and toxicity of intermediates during photocatalysis, which is essential to explore and confirm the practical applicability of modified g-C3N4 in wastewater treatment.

Typically, high performance liquid chromatography was adopted to analyze intermediate structures and then explore reaction pathways in photocatalytic degradation. The acute toxicity, developmental toxicity, mutagenicity and bioaccumulation factor of degradation intermediates or by-products were investigated by using Toxicity Estimation Software (T.E.S.T.) based on Quantitative Structure–Activity Relationship (QSAR) prediction (Hu et al. 2022; Liu et al. 2022c). In the study reported by Cai's group, considerable amount of intermediates which were generated during the photocatalytic degradation of sulfamethiadiazole over Ag/AgVO3/carbon-rich g-C3N4 was more toxic when compared with the target pollutant (Liu et al. 2022c). They also noted that despite complete degradation of sulfamethiadiazole achieving within 0.5 h, the intermediates were still found in the treated water. The toxicity of intermediates can be eased by extending the photocatalytic reaction time to attain greater mineralization (Liu et al. 2022c). Figure 8 shows similar findings, reported by Wu and coworkers (Wu et al. 2022). In the presence of Fe, Co and O co-doped g-C3N4, a decrease in acute toxicity, developmental toxicity, and mutagenicity of intermediates was noticed by extending reaction time during the photocatalytic degradation of tetracycline (Wu et al. 2022). The above-mentioned toxicity analysis suggested good efficiency of modified g-C3N4 catalysts as well as their environmentally friendly nature in detoxification of target pollutants. However, to the best of our knowledge, such detailed attention on degradation pathways and toxicity changes of antibiotic degradation over the modified g-C3N4-based photocatalysts is still limited.
Figure 8

Acute toxicity for daphnia magna (a), developmental toxicity (b), bioaccumulation factor (c), and mutagenicity (d) of primary intermediates during tetracycline degradation over Fe, Co and O co-doped g-C3N4 (Wu et al. 2022).

Figure 8

Acute toxicity for daphnia magna (a), developmental toxicity (b), bioaccumulation factor (c), and mutagenicity (d) of primary intermediates during tetracycline degradation over Fe, Co and O co-doped g-C3N4 (Wu et al. 2022).

Close modal

Despite the promising improvement in photocatalytic performances of the modified g-C3N4, most of the relevant photocatalysts and photocatalytic reactions are still under study and limited to the laboratory. The underlying mechanisms and toxicity of intermediates in those photocatalytic reactions remain unclear, which in turn limit their practical application. Therefore, future research in this field is necessary to address the following research gaps and explore potential for commercialization.

  • (1) Economical and environmentally friendly synthesis of photocatalysts

Most synthesis of g-C3N4-based photocatalysts requires high temperature – over 500 °C and long pyrolysis reaction time – several hours (e.g. 4 h) (Yang et al. 2018; Li et al. 2023b). Meanwhile, many of the amine-based precursors employed to prepare g-C3N4 can generate toxic substances (e.g. sulfur-containing by-products) released into the environment (Shamilov et al. 2023). Therefore, there is a need to explore more energy-efficient techniques and more environmentally friendly chemicals for use during synthesis.

So far, various high performance photocatalysts, including modified g-C3N4, have been developed, but their synthesis is only limited to the laboratory scale. It is necessary to validate that their synthesis processes are stable, simple, and reliable for industry-scale fabrication, while their unique structural, chemical, and morphological characteristics can be largely controlled and retained. Moreover, other factors should be investigated in their synthesis when transiting from laboratory to full-scale production of photocatalysts, including its reliability, scalability, production yield, process sustainability and safety.

  • (2) Improvement of photocatalyst performance, recovery, and reuse

Some of the modified g-C3N4 photocatalysts are prone to photocorrosion, due to the defects formed and/or doping of foreign elements, such as metal ions or particles. Leaching of dopants into water environment may cause another contamination and also affect reusability of catalysts. Some, such as peroxides generated in photocatalytic reactions, have been identified to deactivate and limit the performance of g-C3N4 by binding to its surface, thereby restraining its industrial applications (Vasilchenko et al. 2022). The chemical stability of modified g-C3N4 needs to be largely retained to achieve superior recyclability and reusability. Future research would need to ascertain their long-term stability, especially for specific applications and extreme operation conditions.

The recovery of modified g-C3N4 NPs after photocatalytic removal of antibiotics from water is a key challenge to its industrial application. The introduction of magnetic property can aid the efficient recovery of g-C3N4-based materials in a short period of time simply with the help of an external magnetic field. Other forms of catalysts, such as membranes or films, would also benefit catalyst recovery and practical application.

  • (3) Continuous exploration of mechanisms and analysis of intermediates

Although significant projections on photocatalytic reactions have been outlined by researchers, there is a need to explore the relationship between heterostructure and performance of modified g-C3N4, especially with respect to the charge transfer and separation. Continuous effort should be devoted to providing insight on photocatalytic mechanisms of modified g-C3N4 based on a complete analysis of physicochemical characteristics, electrochemical properties, and theoretical modelling (such as DFT calculations). The use of machine learning models alongside experimental research will expedite optimization of photocatalytic degradation over a selected catalyst, minimization of chemical use and waste disposal, and aid better understanding of that photocatalytic reaction, as well as benefit development of other photocatalytic catalysts and systems.

Research effort on degradation pathways and toxicity changes of intermediates over the modified g-C3N4 is still limited. There is a lack of direct evidence proving the complete mineralization of target pollutants and understanding the potential effects of residues on the environment, including microorganisms.

  • (4) Assessment of economic viability of photocatalytic reaction and operation

It is imperative to assess the economic viability of a photocatalytic reaction using a specific catalyst material as a potential wastewater treatment process for antibiotic removal. Photocatalysis relies on a photocatalyst to drive a chemical reaction using light energy. Hence, promoting the economic viability and commercial application of photocatalysis requires consideration of selecting efficient light source and photocatalyst, as well as operation optimization.

Commercial UV lamps are costly with a short life expectancy, and are usually ineffective for generating UV light after one year of service (Xiao et al. 2015). In general, a photocatalytic process involving the use of UV lamp and UV-sensitive photocatalysts, such as TiO2 and ZnO, among others, would be expensive and less economically viable, due to the high energy demand and high cost of UV lamps. On the other hand, the use of visible light or solar-active photocatalysts, such as g-C3N4, WO3, etc., could be more cost-effective and economically viable. Sunlight is a low-cost, renewable, and abundant energy resource that can be used to initiate and promote photocatalytic reactions; however, the treatment by sunlight is severely restricted by sunshine duration. A few solar photocatalytic water treatment reactors have been reported in recent years (Al-Nuaim et al. 2023). There are also reports on the optimization of photoreactors by using internal illumination, e.g. LEDs and optical fibers (O'Neal Tugaoen et al. 2018). Energy consumption is one of important characteristics to evaluate economic viability of photocatalytic degradation; electricity energy per order (EE/O) has been used to study it in tetracycline degradation (Xia et al. 2020b). However, no effort has been found in the research on modified g-C3N4 for photocatalytic removal of antibiotics.

On the other side, the photocatalytic activity, reusability, and stability of a catalyst are crucial to ensure economic feasibility of the reaction, which have been discussed above. The use of suspended photocatalyst particles in the treatment of wastewater might be seen with a limited recycling and recovery, and in turn make the treatment laborious and less economical. Along with the development of an energy efficient photocatalytic reactor, small g-C3N4-based photocatalyst particles might be immobilized onto a recyclable, reusable, environmental-friendly solid supports, such as clay particles and polymer matrices, to increase the sizes of resulting catalysts. However, it might induce reduced photocatalytic activity (Sraw et al. 2018), which needs to be minimized. As per the experimental conditions, the optimization of various operating parameters, including light source, catalyst dosage, and water chemistry, need to be well investigated on photocatalytic efficiency. The combination between photocatalysis and other AOPs, such as ozonation and Fenton process, could assist in minimizing reaction time and thereby enhance economic viability of pollutant removal (Saritha et al. 2007; Mena et al. 2012).

Antibiotic pollution has been a menace to the environment for decades and this constitutes a major challenge to public health. The processes employed in centralized or decentralized water treatment systems are not sufficient for their effective removal. Visible-light-driven photocatalysis has been regarded as a potential approach to address this challenge; in which g-C3N4, having features of chemical and thermal stability, low cost, easy synthesis, and narrow band gap (∼2.7 eV), has been established as a promising material for practical photocatalytic applications with use of solar energy. Modification of g-C3N4,via metal doping, non-metal doping, co-doping, metal decoration, defect tuning, structural engineering, or heterostructure formation, has been proven to further enhance photocatalytic activity of the pristine semiconductor and then improve efficiency for removal of antibiotic pollutants. It was found that the g-C3N4 modified via heterostructure formation has attracted greatest research attention and showed promising photocatalytic degradation performances. It should be noted that the integration of two or more modification strategies would provide great potential to boost photocatalytic activity of resulting composites. Future research effort is suggested to addressing challenges and limitations which have been identified, including economical and environmentally friendly synthesis of photocatalysts, economic viability of photocatalytic reaction and operation, and mechanism exploration and intermediate analysis.

All relevant data are included in the paper or its Supplementary Information.

The authors declare there is no conflict.

Abdel-Moniem
S. M.
,
El-Liethy
M. A.
,
Ibrahim
H. S.
&
Ali
M. E. M.
2021
Innovative green/non-toxic Bi2S3@ g-C3N4 nanosheets for dark antimicrobial activity and photocatalytic depollution: Turnover assessment
.
Ecotoxicol. Environ. Saf.
226
,
112808
.
doi: 10.1016/j.ecoenv.2021.112808
.
Acsmaterial
.
Available from: https://www.acsmaterial.com (accessed 5 May 2024)
.
Ahmed
S. F.
,
Mofijur
M.
,
Nuzhat
S.
,
Chowdhry
A. T.
,
Rafa
N.
,
Uddin
M. A.
,
Inayat
A.
,
Mahlia
T. M.
,
Ong
H. M.
,
Chia
W. Y.
&
Show
P. L.
2021
Recent developments in physical, biological, chemical, and hybrid treatment techniques for removing emerging contaminants from wastewater
.
J. Hazard. Mater.
416
,
125912
.
doi: 10.1016/j.jhazmat.2021.125912
.
Ajala
O. A.
,
Akinnawo
S. O.
,
Bamisaye
A.
,
Adedipe
D. T.
,
Adesina
MO. O.
,
Okon-Akan
O. A.
,
Adebusuyi
T. A.
,
Ojedokun
A. T.
,
Adegoke
K. A.
&
Bello
O. S.
2023
Adsorptive removal of antibiotic pollutants from wastewater using biomass/biochar-based adsorbents
.
RSC Adv.
13
(
7
),
4678
4712
.
doi: 10.1039/d2ra06436g
.
Al-Musawi
T.
,
Yilmaz
M.
,
Ramírez-Coronel
A. A.
,
Lateef Al-Awsi
G.R.
,
Alwaily
E. R.
,
Asghari
A.
&
Balarak
D.
Degradation of amoxicillin under a UV or visible light photocatalytic treatment process using Fe2O3/bentonite/TiO2: Performance, kinetic, degradation pathway, energy consumption, and toxicology studies
.
Optik (Stuttg)
272
(
2023
).
doi: 10.1016/j.ijleo.2022.170230
.
Al-Nuaim
M. A.
,
Alwasiti
A. A.
&
Shnain
Z. Y.
2023
The photocatalytic process in the treatment of polluted water
.
Chem. Pap.
77
(
2
),
677
701
.
doi: 10.1007/s11696-022-02468-7
.
Alshandoudi
L. M.
,
Al Subhi
A. Y.
,
Al-Isaee
S. A.
,
Shaltout
W. A.
&
Hassan
A. F.
2023
Static adsorption and photocatalytic degradation of amoxicillin using titanium dioxide/hydroxyapatite nanoparticles based on sea scallop shells
.
Environ. Sci. Pollut. Res.
30
(
38
),
88704
88723
.
doi: 10.1007/s11356-023-28530-9
.
Awfa
D.
,
Ateia
M.
,
Fujii
M.
&
Yoshimura
C.
2019
Novel magnetic carbon nanotube-TiO2 composites for solar light photocatalytic degradation of pharmaceuticals in the presence of natural organic matter
.
J. Water Process Eng.
31
.
doi: 10.1016/j.jwpe.2019.100836
.
Bai
X.
,
Wang
L.
,
Zong
R.
&
Zhu
Y.
2013
Photocatalytic activity enhanced via g-C3N4 nanoplates to nanorods
.
J. Phys. Chem. C
117
(
19
),
9952
9961
.
doi: 10.1021/jp402062d
.
Bai
L.
,
Huang
H.
,
Yu
S.
,
Zhang
D.
,
Huang
H.
&
Zhang
Y.
2022
Role of transition metal oxides in g-C3N4-based heterojunctions for photocatalysis and supercapacitors
.
J. Energy Chem.
64
,
214
235
.
doi: 10.1016/j.jechem.2021.04.057
.
Bano
K.
,
Kaushal
S.
,
Lal
B.
,
Joshi
S. K.
,
Kumar
R.
&
Singh
P. P.
2023
Fabrication of CuO/ZnO heterojunction photocatalyst for efficient photocatalytic degradation of tetracycline and ciprofloxacin under direct sun light
.
Environ. Nanotechnol. Monit. Manage.
20
,
100863
.
doi: 10.1016/j.enmm.2023.100863
.
Battilani
A.
,
Steiner
M.
,
Andersen
M.
,
Back
S. N.
,
Lorenzen
J.
,
Avi Schweitzer
A.
,
Dalsgaard
A.
,
Forslund
A.
,
Gola
S.
,
Klopmann
W.
,
Plauborg
F.
&
Andersen
M. N.
2010
Decentralised water and wastewater treatment technologies to produce functional water for irrigation
.
Agric. Water Manage.
98
(
3
),
385
402
.
doi: 10.1016/j.agwat.2010.10.010
.
Belaissa
Y.
,
Nibou
D.
,
Assadi
A. A.
,
Bellal
B.
&
Trari
M.
2016
A new hetero-junction p-CuO/n-ZnO for the removal of amoxicillin by photocatalysis under solar irradiation
.
J. Taiwan Inst. Chem. Eng.
68
,
254
265
.
doi: 10.1016/j.jtice.2016.09.002
.
Bódalo-Santoyo
A.
,
Gómez-Carrasco
J. L.
,
Gómez-Gómez
E.
,
Máximo-Martín
M. F.
&
Hidalgo-Montesinos
A. M.
2004
Spiral-wound membrane reverse osmosis and the treatment of industrial effluents
.
Desalination
160
(
2
),
151
158
.
doi: 10.1016/S0011-9164(04)90005-7
.
Bui
T. S.
,
Bansal
P.
,
Lee
B. K.
,
Mahvelati-Shamsabadi
T.
&
Soltani
T.
2020
Facile fabrication of novel Ba-doped g-C3N4 photocatalyst with remarkably enhanced photocatalytic activity towards tetracycline elimination under visible-light irradiation
.
Appl. Surf. Sci.
506
,
1
12
.
doi: 10.1016/j.apsusc.2019.144184
.
Cai
Y.
,
He
J.
,
Zhang
J.
&
Li
J.
2020
Antibiotic contamination control mediated by manganese oxidizing bacteria in a lab-scale biofilter
.
J. Environ. Sci. (China)
98
,
47
54
.
doi: 10.1016/j.jes.2020.05.024
.
Chen
X.
,
Li
C.
,
Grätzel
M.
,
Kostecki
R.
&
Mao
S. S.
2012
Nanomaterials for renewable energy production and storage
.
Chem. Soc. Rev.
41
(
23
),
7909
7937
.
doi: 10.1039/c2cs35230c
.
Chen
D.
,
Wu
S.
,
Fang
J.
,
Lu
S.
,
Zhou
G.
,
Feng
W.
,
Yang
F.
,
Chen
Y.
&
Fang
Z.
2017
A nanosheet-like Bi2O3/ g-C3N4 heterostructure modified by plasmonic metallic Bi and oxygen vacancies with high photodegradation activity of organic pollutants
.
Sep. Purif. Technol.
.
doi: 10.1016/j.seppur.2017.11.011
.
Chen
P.
,
Xing
P.
,
Chen
Z.
,
Lin
H.
&
He
Y.
2018
Rapid and energy-efficient preparation of boron doped g-C3N4 with excellent performance in photocatalytic H2-evolution
.
Int. J. Hydrogen Energy
43
(
43
),
19984
19989
.
doi: 10.1016/j.ijhydene.2018.09.078
.
Chen
M.
,
Zhu
M.
,
Zhu
Y.
,
Wang
D.
,
Li
Z.
,
Zeng
G.
,
Zhang
C.
,
Huang
J.
&
Xu
P.
2019
Collision of emerging and traditional methods for antibiotics removal: Taking constructed wetlands and nanotechnology as an example
.
NanoImpact
15
,
100175
.
doi: 10.1016/j.impact.2019.100175
.
Chen
Y.
,
Shen
W.
,
Wang
B.
,
Zhao
X.
,
Su
L.
,
Kong
M.
,
Li
H.
,
Zhang
S.
&
Li
J.
2020a
Occurrence and fate of antibiotics, antimicrobial resistance determinants and potential human pathogens in a wastewater treatment plant and their effects on receiving waters in Nanjing, China
.
Ecotoxicol. Environ. Saf.
206
,
111371
.
doi: 10.1016/j.ecoenv.2020.111371
.
Chen
H.
,
Zhang
X.
,
Jiang
L.
,
Yuan
X.
,
Liang
J.
,
Zhang
J.
,
Yu
H.
,
Chu
W.
,
Wu
Z.
,
Li
H.
&
Li
Y.
2021
Strategic combination of nitrogen-doped carbon quantum dots and g-C3N4: Efficient photocatalytic peroxydisulfate for the degradation of tetracycline hydrochloride and mechanism insight
.
Sep. Purif. Technol.
272
,
118947
.
doi: 10.1016/j.seppur.2021.118947
.
Chu
Y. C.
,
Lin
T. J.
,
Lin
Y. R.
,
Chiu
W. L.
,
Nguyen
B. S.
&
Hu
C.
2020
Influence of P,S,O-doping on g-C3N4 for hydrogel formation and photocatalysis: An experimental and theoretical study
.
Carbon N. Y.
169
,
338
348
.
doi: 10.1016/j.carbon.2020.07.053
.
Dehghani
M. h.
,
Ahmadi
S.
,
Ghosh
S.
,
Othmani
A.
,
Osagie
C.
,
Meskin
M.
,
Alkafaas
S. S.
,
Malloum
A.
,
Malloum
A.
,
Khanday
W. A.
,
Jacob
A. O.
,
Gökkuş
Ö.
,
Oroke
A.
,
Chineme
O. M.
,
Karri
R. R.
&
Lima
E. C.
2023
Recent advances on sustainable adsorbents for the remediation of noxious pollutants from water and wastewater: A critical review
.
Arab. J. Chem.
16
.
doi: 10.1016/j.arabjc.2023.105303
.
Deng
F.
,
Lu
X.
,
Zhao
L.
,
Luo
Y.
,
Pei
X.
,
Luo
X.
&
Luo
S.
2016
Facile low-temperature co-precipitation method to synthesize hierarchical network-like g-C3N4/SnIn4S8 with superior photocatalytic performance
.
J. Mater. Sci.
51
(
14
),
6998
7007
.
doi: 10.1007/s10853-016-9988-2
.
Dhiman
P.
,
Kumar
A.
,
Shekh
M.
,
Sharma
G.
,
Rana
G.
,
Vo
D. N.
,
Almasoud
N.
,
Naushad
M.
&
Al Othman
Z. A.
2021
Robust magnetic ZnO-Fe2O3 Z-scheme hetereojunctions with in-built metal-redox for high performance photo-degradation of sulfamethoxazole and electrochemical dopamine detection
.
Environ. Res.
197
,
111074
.
doi: 10.1016/j.envres.2021.111074
.
Ding
J.
,
Liu
Q.
,
Zhang
Z.
,
Liu
X.
,
Zhao
J.
,
Cheng
S.
,
Zong
B.
&
Dai
W.
2015
Carbon nitride nanosheets decorated with WO3 nanorods: Ultrasonic-assisted facile synthesis and catalytic application in the green manufacture of dialdehydes
.
Appl. Catal. B Environ.
165
,
511
518
.
doi: 10.1016/j.apcatb.2014.10.037
.
Ding
J.
,
Xu
W.
,
Wan
H.
,
Yuan
D.
,
Cheng
C.
,
Wang
L.
,
Guan
G.
&
Dai
W.
2018
Nitrogen vacancy engineered graphitic g-C3N4-based polymers for photocatalytic oxidation of aromatic alcohols to aldehydes
.
Appl. Catal. B Environ.
221
,
626
634
.
doi: 10.1016/j.apcatb.2017.09.048
.
Ding
S.
,
Tan
P.
,
Meng
N.
,
Cao
X.
&
Wang
W.
2023
WO3/N-CDs photocatalyst with Z-scheme heterojunction for efficient tetracycline degradation under visible and near-infrared light
.
Colloids Surfaces A Physicochem. Eng. Asp.
675
,
132086
.
doi: 10.1016/j.colsurfa.2023.132086
.
Dong
X.
&
Cheng
F.
2015
Recent development in exfoliated two-dimensional g-C3N4 nanosheets for photocatalytic applications
.
J. Mater. Chem. A
3
(
47
),
23642
23652
.
doi: 10.1039/c5ta07374j
.
Duan
Y.
,
Zhou
S.
,
Deng
L.
,
Shi
Z.
,
Jiang
H.
&
Zhou
S.
2020
Enhanced photocatalytic degradation of sulfadiazine via g-C3N4/carbon dots nanosheets under nanoconfinement: Synthesis, biocompatibility and mechanism
.
J. Environ. Chem. Eng.
8
(
6
),
104612
.
doi: 10.1016/j.jece.2020.104612
.
Enesca
A.
&
Sisman
V.
2023
UV–vis activated CuO/CuS/WO3@PANI heterostructure for photocatalytic removal of pharmaceutical active compounds
.
Ceram. Int.
49
(
18
),
30592
30602
.
doi: 10.1016/j.ceramint.2023.07.012
.
Faisal
M.
,
Jalalah
M.
,
Harraz
F. A.
,
El-toni
A. M.
&
Khan
A.
2020
Au nanoparticles-doped g-C3N4 nanocomposites for enhanced photocatalytic performance under visible light illumination
.
Ceram. Int.
doi: 10.1016/j.ceramint.2020.05.250
.
Fawzy
A.
,
Mahanna
H.
&
Mossad
M.
2022
Effective photocatalytic degradation of amoxicillin using MIL-53(Al)/ZnO composite
.
Environ. Sci. Pollut. Res.
29
(
45
),
68532
68546
.
doi: 10.1007/s11356-022-20527-0
.
Feng
D.
,
Cheng
Y.
,
He
J.
,
Zheng
L.
,
Shao
D.
,
Wang
W.
,
Wang
W.
,
Lu
F.
,
Dong
H.
,
Liu
H.
,
Zheng
R.
&
Liu
H.
2017
Enhanced photocatalytic activities of g-C3N4 with large specific surface area via a facile one-step synthesis process
.
Carbon N. Y.
125
,
454
463
.
doi: 10.1016/j.carbon.2017.09.084
.
Fu
J.
,
Xu
Q.
,
Low
J.
,
Jiang
C.
&
Yu
J.
2019
Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst
.
Appl. Catal. B Environ.
243
,
556
565
.
doi: 10.1016/j.apcatb.2018.11.011
.
Gai
S.
,
Zhang
J.
,
Fan
R.
,
Xing
K.
,
Chen
W.
,
Zhu
K.
,
Zheng
X.
,
Wang
P.
,
Fang
X.
&
Yang
Y.
2020
Highly stable zinc-based metal-organic frameworks and corresponding flexible composites for removal and detection of antibiotics in water
.
ACS Appl. Mater. Interfaces
12
(
7
),
8650
8662
.
doi: 10.1021/acsami.9b19583
.
Gao
B.
,
Wang
J.
,
Dou
M.
,
Xu
C.
&
Huang
X.
2020
Enhanced photocatalytic removal of amoxicillin with Ag/TiO2/mesoporous g-C3N4 under visible light: Property and mechanistic studies
.
Environ. Sci. Pollut. Res.
27
(
7
),
7025
7039
.
doi: 10.1007/s11356-019-07112-8
.
Gonçalves
M. G.
,
da Silva Veiga
P. A.
,
Fornari
M. R.
,
Peralta-Zamora
P.
,
Mangrich
A. S.
&
Silvestri
S.
2020
Relationship of the physicochemical properties of novel ZnO/biochar composites to their efficiencies in the degradation of sulfamethoxazole and methyl orange
.
Sci. Total Environ.
748
,
141381
.
doi: 10.1016/j.scitotenv.2020.141381
.
Govindaraj
T.
,
Mahendran
C.
,
Manikandan
V. S.
,
Archana
J.
,
Shkir
M.
&
Chandrasekaran
J.
2021
Fabrication of WO3 nanorods/RGO hybrid nanostructures for enhanced visible-light-driven photocatalytic degradation of Ciprofloxacin and Rhodamine B in an ecosystem
.
J. Alloys Compd.
868
,
159091
.
doi: 10.1016/j.jallcom.2021.159091
.
Guo
F.
,
Li
M.
,
Ren
M.
,
Huang
X.
,
Shu
K.
,
Shi
W.
&
Lu
C.
2019
Facile bottom-up preparation of Cl-doped porous g-C3N4 nanosheets for enhanced photocatalytic degradation of tetracycline under visible light
.
Sep. Purif. Technol.
228
(
June
),
115770
.
doi: 10.1016/j.seppur.2019.115770
.
Hasjia
V.
,
Raizada
P.
,
Sudhaik
A.
,
Sharma
K.
,
Kumar
A.
,
Singh
P.
,
Jonnalagadda
S. B.
&
Thakur
V. K.
2019
Recent advances in noble metal free doped graphitic carbon nitride based nanohybrids for photocatalysis of organic contaminants in water: A review
.
Appl. Mater. Today
15
,
494
524
.
doi: 10.1016/j.apmt.2019.04.003
.
Hassan
M.
,
Ashraf
G. A.
,
Zhang
B.
,
He
Y.
,
Shen
G.
&
Hu
S.
2020
Energy-efficient degradation of antibiotics in microbial electro-Fenton system catalysed by M-type strontium hexaferrite nanoparticles
.
Chem. Eng. J.
380
,
122483
.
doi: 10.1016/j.cej.2019.122483
.
He
R.
,
Xue
K.
,
Wang
J.
,
Yan
Y.
,
Peng
Y.
,
Yang
T.
,
Hu
Y.
&
Wang
W.
2020
Nitrogen-deficient g-C3Nx/POMs porous nanosheets with P–N heterojunctions capable of the efficient photocatalytic degradation of ciprofloxacin
.
Chemosphere
259
.
doi: 10.1016/j.chemosphere.2020.127465
.
He
Y. Q.
,
Zhang
F.
,
Ma
B.
,
Xu
N.
,
Junior
L. B.
,
Yao
B.
,
Yang
Q.
,
Liu
D.
&
Ma
Z.
Remarkably enhanced visible-light photocatalytic hydrogen evolution and antibiotic degradation over g-C3N4 nanosheets decorated by using nickel phosphide and gold nanoparticles as cocatalysts
.
Appl. Surf. Sci.
517
.
doi: 10.1016/j.apsusc.2020.146187
.
Hemmati-Eslamlu
P.
&
Habibi-Yangjeh
A.
2024
A review on impressive Z- and S-scheme photocatalysts composed of g-C3N4 for detoxification of antibiotics
.
FlatChem
43
,
100597
.
doi: 10.1016/j.flatc.2023.100597
.
Hu
X.
,
Zhang
W.
,
Yong
Y.
,
Xu
Y.
,
Wang
X.
&
Yao
X.
2020a
One-step synthesis of iodine-doped g-C3N4 with enhanced photocatalytic nitrogen fixation performance
.
Appl. Surf. Sci.
510
.
doi: 10.1016/j.apsusc.2020.145413
.
Hu
K. H.
,
Li
R.
,
Ye
C.
,
Wang
A.
,
Wei
W.
,
Hu
D.
,
Qiu
R.
&
Yan
K.
2020b
Facile synthesis of Z-scheme composite of TiO2 nanorod/ g-C3N4 nanosheet efficient for photocatalytic degradation of ciprofloxacin
.
J. Cleaner Prod.
253
.
doi: 10.1016/j.jclepro.2020.120055
.
Hu
X.
,
Lu
P.
,
Pan
R.
,
Li
Y.
,
Bai
J.
,
He
Y.
,
Zhang
C.
,
Jia
F.
&
Fu
M.
2021
Metal-ion-assisted construction of cyano group defects in g-C3N4 to simultaneously degrade wastewater and produce hydrogen
.
Chem. Eng. J.
423
,
130278
.
doi: 10.1016/j.cej.2021.130278
.
Huang
J.
,
Li
D.
,
Li
R.
,
Zhang
Q.
,
Chen
T.
,
Liu
H.
,
Liu
Y.
,
Lv
W.
&
Liu
G.
2019
An efficient metal-free phosphorus and oxygen co-doped g-C3N4 photocatalyst with enhanced visible light photocatalytic activity for the degradation of fluoroquinolone antibiotics
.
Chem. Eng. J.
374
,
242
253
.
doi: 10.1016/j.cej.2019.05.175
.
Huang
J.
,
Liu
J.
,
Yan
J.
,
Wang
C.
,
Fei
T.
,
Ji
Haiyan
J.
,
Song
Y.
,
Ding
C.
,
Liu
C.
,
Xu
H.
&
Li
H.
2020a
Enhanced photocatalytic H2 evolution by deposition of metal nanoparticles into mesoporous structure of g-C3N4
.
Colloids Surfaces A Physicochem. Eng. Asp.
585
,
124067
.
doi: 10.1016/j.colsurfa.2019.124067
.
Huang
L.
,
Bao
D.
,
Li
J.
,
Jiang
X.
&
Sun
X.
2021
Construction of Au modified direct Z-scheme g-C3N4/defective ZnO heterostructure with stable high-performance for tetracycline degradation
.
Appl. Surf. Sci.
555
,
149696
.
doi: 10.1016/j.apsusc.2021.149696
.
Hunge
Y. M.
,
Yadav
A. A.
,
Kang
S. W.
&
Kim
H.
2022
Photocatalytic degradation of tetracycline antibiotics using hydrothermally synthesized two-dimensional molybdenum disulfide/titanium dioxide composites
.
J. Colloid Interface Sci.
606
,
454
463
.
doi: 10.1016/j.jcis.2021.07.151
.
Huong
V. T.
,
Duc
B. T.
,
An
N. T.
,
Anh
T. T. P.
,
Aminabhavi
T. M.
,
Vasseghian
Y.
&
Joo
S.-W.
2024
3D-Printed WO3-UiO-66@reduced graphene oxide nanocomposites for photocatalytic degradation of sulfamethoxazole
.
Chem. Eng. J.
483
,
149277
.
doi: 10.1016/j.cej.2024.149277
.
Jeevitha
G.
,
Sivaselvam
S.
,
Keerthana
S.
,
Mangalaraj
D.
&
Ponpandian
N.
2022
Highly effective and stable MWCNT/WO3 nanocatalyst for ammonia gas sensing, photodegradation of ciprofloxacin and peroxidase mimic activity
.
Chemosphere
297
,
134023
.
doi: 10.1016/j.chemosphere.2022.134023
.
Jiang
L.
,
Yuan
X.
,
Zeng
G
,
Chen
X.
,
Liang
J.
,
Zhang
J.
,
Wang
H.
&
Wang
H.
2017
Phosphorus- and sulfur-codoped g-C3N4: Facile preparation, mechanism insight, and application as efficient photocatalyst for tetracycline and methyl orange degradation under visible light irradiation
.
ACS Sustainable Chem. Eng.
5
(
7
),
5831
5841
.
doi: 10.1021/acssuschemeng.7b00559
.
Jiang
L.
,
Yuan
X.
,
Zeng
G.
,
Liang
J.
,
Wu
Z.
,
Yu
H.
,
Mo
D.
,
Wang
H.
,
Xiao
Z.
&
Zhou
C.
2019
Nitrogen self-doped g-C3N4 nanosheets with tunable band structures for enhanced photocatalytic tetracycline degradation
.
J. Colloid Interface Sci.
536
,
17
29
.
doi: 10.1016/j.jcis.2018.10.033
.
Jiang
X.
,
Qiao
K.
,
Feng
Y.
,
Sun
L.
,
Jiang
N.
&
Wang
J.
2022
Self-assembled synthesis of porous sulfur-doped g-C3N4 nanotubes with efficient photocatalytic degradation activity for tetracycline
.
J. Photochem. Photobiol. A Chem.
433
,
114194
.
doi: 10.1016/j.jphotochem.2022.114194
.
Jin
Z.
&
Zhang
L.
2020
Performance of Ni-Cu bimetallic co-catalyst g-C3N4 nanosheets for improving hydrogen evolution
.
J. Mater. Sci. Technol.
49
,
144
156
.
doi: 10.1016/j.jmst.2020.02.025
.
Jin
C.
,
Kang
J.
,
Li
Z.
,
Wang
M.
,
Wu
Z.
&
Xie
Y.
2020
Enhanced visible light photocatalytic degradation of tetracycline by MoS2/Ag/g-C3N4 Z-scheme composites with peroxymonosulfate
.
Appl. Surf. Sci.
514
,
146076
.
doi: 10.1016/j.apsusc.2020.146076
.
Kang
J.
,
Tang
Y.
,
Wang
M.
,
Jin
C.
,
Liu
J.
,
Li
S.
,
Li
Z.
&
Zhu
J.
2021
The enhanced peroxymonosulfate-assisted photocatalytic degradation of tetracycline under visible light by g-C3N4/Na-BiVO4 heterojunction catalyst and its mechanism
.
J. Environ. Chem. Eng.
9
(
4
),
105524
.
doi: 10.1016/j.jece.2021.105524
.
Kaur
K.
,
Kumar
M.
&
Kumar
D.
2021
Insight into the amoxicillin resistance, ecotoxicity, and remediation strategies
.
J. Water Process Eng.
39
,
101858
.
doi: 10.1016/j.jwpe.2020.101858
.
Köktaş
İ. Y.
,
Gökkuş
Ö.
,
Kariper
İ. A.
&
Othmani
A.
2023
Tetracycline removal from aqueous solution by electrooxidation using ruthenium-coated graphite anode
.
Chemosphere
315
.
doi: 10.1016/j.chemosphere.2023.137758
.
Kong
L.
,
Wang
J.
,
Mu
X.
,
Li
R.
,
Li
X.
,
Fan
X.
,
Song
P.
,
Ma
F.
&
Sun
M.
2019
Porous size dependent g-C3N4 for efficient photocatalysts: Regulation synthesizes and physical mechanism
.
Mater. Today Energy
13
,
11
21
.
doi: 10.1016/j.mtener.2019.04.011
.
Kumar
A.
,
Kumari
A.
,
Sharma
G.
,
Du
B.
,
Naushad
M.
&
Stadler
F. J.
2020
Carbon quantum dots and reduced graphene oxide modified self-assembled S@g-C3N4 metal-free nano-photocatalyst for high performance degradation of chloramphenicol
.
J. Mol. Liq.
300
,
112356
.
doi: 10.1016/j.molliq.2019.112356
.
Lan
H.
,
Li
X.
,
An
X.
,
Liu
F.
,
Chen
C.
,
Liu
H.
&
Qu
J.
2017
Microstructure of carbon nitride affecting synergetic photocatalytic activity: Hydrogen bonds vs. structural defects
.
Appl. Catal. B Environ.
204
,
49
57
.
doi: 10.1016/j.apcatb.2016.11.022
.
Li
G.
,
Wang
B.
,
Zhang
J.
,
Wang
R.
&
Liu
H.
2019b
Er-doped g-C3N4 for photodegradation of tetracycline and tylosin: High photocatalytic activity and low leaching toxicity
.
Chem. Eng. J.
123500
.
doi: 10.1016/j.cej.2019.123500
.
Li
F.
,
Zhu
P.
,
Wang
S.
,
Xu
X.
,
Zhou
Z.
&
Wu
C.
2019c
Porous g-C3N4 with enhanced photocatalytic levofloxacin
. RSC Adv.
20633
20642
.
doi: 10.1039/c9ra02411e
.
Li
S.
,
Hu
S.
,
Jiang
W.
,
Zhang
J.
,
Xu
K.
&
Wang
Z.
2019e
In situ construction of WO3 nanoparticles decorated Bi2MoO6 microspheres for boosting photocatalytic degradation of refractory pollutants
.
J. Colloid Interface Sci.
556
,
335
344
.
doi: 10.1016/j.jcis.2019.08.077
.
Li
G.
,
Wang
B.
,
Zhang
J.
,
Wang
R.
&
Liu
H.
2020a
Er-doped g-C3N4 for photodegradation of tetracycline and tylosin: High photocatalytic activity and low leaching toxicity
.
Chem. Eng. J.
391
,
123500
.
doi: 10.1016/j.cej.2019.123500
.
Li
G.
,
Wang
R.
,
Wang
B.
&
Zhang
J.
2020b
Sm-doped mesoporous g-C3N4 as efficient catalyst for degradation of tylosin: Influencing factors and toxicity assessment
.
Appl. Surf. Sci.
517
.
doi: 10.1016/j.apsusc.2020.146212
.
Li
H.
,
Zhang
N.
,
Zhao
F.
,
Liu
T.
&
Wang
Y.
2020d
Facile fabrication of a novel Au/phosphorus-doped g-C3N4 photocatalyst with excellent visible light
. Catalysts, 10 (6), 701. https://doi.org/10.3390/catal10060701
Li
J.
,
Li
Y.
,
Zhang
W.
,
Naraginti
S.
,
Sivakumar
A.
&
Zhang
C.
2020e
Fabrication of novel tetrahedral Ag3PO4/g-C3N4/BiVO4 ternary composite for efficient detoxification of sulfamethoxazole
.
Process Saf. Environ. Prot.
143
,
340
347
.
doi: 10.1016/j.psep.2020.07.009
.
Li
S.
,
Wu
Y.
,
Zheng
H.
,
Li
H.
,
Zheng
Y.
,
Nan
J.
,
Nagarajan
D.
&
Chang
J.-S.
2023a
Antibiotics degradation by advanced oxidation process (AOPs): Recent advances in ecotoxicity and antibiotic-resistance genes induction of degradation products
.
Chemosphere
311
,
136977
.
doi: 10.1016/j.chemosphere.2022.136977
.
Li
K.
,
Chen
M.
,
Chen
L.
,
Zhao
S.
,
Xue
W.
,
Han
Z.
&
Han
Y.
2023b
Synthesis of g-C3N4 derived from different precursors for photodegradation of sulfamethazine under visible light
.
Processes
11
(
2
).
doi: 10.3390/pr11020528
.
Liang
Q.
,
Li
Z.
,
Huang
Z. H.
,
Kang
F.
&
Yang
Q. H.
2015
Holey graphitic carbon nitride nanosheets with carbon vacancies for highly improved photocatalytic hydrogen production
.
Adv. Funct. Mater.
25
(
44
),
6885
6892
.
doi: 10.1002/adfm.201503221
.
Liang
L.
,
Shi
L.
,
Wang
F.
,
Wang
H.
,
Yan
P.
,
Cong
Y.
,
Yao
L.
,
Yang
Z.
&
Qi
W.
2020
g-C3N4 nano-fragments as highly efficient hydrogen evolution photocatalysts: Boosting effect of nitrogen vacancy
.
Appl. Catal. A Gen.
599
(
April
).
doi: 10.1016/j.apcata.2020.117618
.
Liao
J.
,
Cui
W.
,
Li
J
,
Sheng
J.
,
Wang
H.
,
Dong
X.
,
Chen
P.
,
Jiang
G.
,
Wang
Z.
&
Dong
F.
2020
Nitrogen defect structure and NO+ intermediate promoted photocatalytic NO removal on H2 treated g-C3N4
.
Chem. Eng. J.
379
,
122282
.
doi: 10.1016/j.cej.2019.122282
.
Libralato
G.
,
Volpi Ghirardini
A.
&
Avezzù
F.
2012
To centralise or to decentralise: An overview of the most recent trends in wastewater treatment management
.
J. Environ. Manage.
94
(
1
),
61
68
.
doi: 10.1016/j.jenvman.2011.07.010
.
Lin
Y.
,
Wang
L.
,
Yu
Y.
,
Zhang
X.
,
Yang
Y
,
Guo
W.
,
Zhang
R.
,
Zhai
Y.
&
Liu
Y.
2021
Construction of molecularly doped and cyano defects co-modified graphitic carbon nitride for the efficient photocatalytic degradation of tetracycline hydrochloride
.
New J. Chem.
45
(
39
),
18598
18608
.
doi: 10.1039/d1nj03602e
.
Ling
C.
,
Yue
C.
,
Yuan
R.
,
Qiu
J.
,
Liu
F. Q.
&
Zhu
J. J.
2020
Enhanced removal of sulfamethoxazole by a novel composite of TiO2 nanocrystals in situ wrapped-Bi2O4 microrods under simulated solar irradiation
.
Chem. Eng. J.
384
,
123278
.
doi: 10.1016/j.cej.2019.123278
.
Liu
J.
,
Wang
H.
&
Antonietti
M.
2016
Graphitic carbon nitride ‘reloaded’: Emerging applications beyond (photo)catalysis
.
Chem. Soc. Rev.
45
(
8
),
2308
2326
.
doi: 10.1039/c5cs00767d
.
Liu
G.
,
Wang
H.
,
Chen
D.
,
Dai
C.
,
Zhang
Z.
&
Feng
Y.
2020
Photodegradation performances and transformation mechanism of sulfamethoxazole with ceo2/CN heterojunction as photocatalyst
.
Sep. Purif. Technol.
237
,
116329
.
doi: 10.1016/j.seppur.2019.116329
.
Liu
L.
,
Huang
J.
,
Yu
H.
,
Wan
J.
,
Liu
L.
,
Yi
K.
,
Zhang
W.
&
Zhang
C.
2021a
Construction of MoO3 nanopaticles/g-C3N4 nanosheets 0D/2D heterojuntion photocatalysts for enhanced photocatalytic degradation of antibiotic pollutant
.
Chemosphere
282
.
doi: 10.1016/j.chemosphere.2021.131049
.
Liu
Y.
,
Tian
J.
,
Wei
L.
,
Wang
Q.
,
Wang
C.
,
Xing
Z.
,
Yang
W.
&
Yang
C.
2021b
Modified g-C3N4/TiO2/CdS ternary heterojunction nanocomposite as highly visible light active photocatalyst originated from CdS as the electron source of TiO2 to accelerate Z-type heterojunction
.
Sep. Purif. Technol.
257
.
doi: 10.1016/j.seppur.2020.117976
.
Liu
H.
,
Huo
W.
,
Zhang
T. C.
,
Ouyang
L.
&
Yuan
S.
2022a
Photocatalytic removal of tetracycline by a Z-scheme heterojunction of bismuth oxyiodide/exfoliated g-C3N4: Performance, mechanism, and degradation pathway
.
Mater. Today Chem.
23
,
100729
.
doi: 10.1016/j.mtchem.2021.100729
.
Liu
H.
,
Wang
L.
,
Wei
S.
,
Wu
Y.
,
Zheng
Y.
,
Yuan
F.
&
Hou
J.
2022b
Study on photocatalytic degradation of amoxicillin in wastewater by Bi2WO6/nano-ZnO
.
Opt. Mater. (Amst)
123
,
111835
.
doi: 10.1016/j.optmat.2021.111835
.
Lu
Z. Y.
,
Ma
Y. L.
,
Zhang
J. T.
,
Fan
N. S.
,
Huang
B. C.
&
Jin
R. C.
2020
A critical review of antibiotic removal strategies: Performance and mechanisms
.
J. Water Process Eng.
38
,
101681
.
doi: 10.1016/j.jwpe.2020.101681
.
Lu
Q.
,
Dong
C.
,
Wei
F.
,
Li
J.
,
Wang
Z.
,
Mu
W.
&
Han
X.
2022
Rational fabrication of Bi2WO6 decorated TiO2 nanotube arrays for photocatalytic degradation of organic pollutants
.
Mater. Res. Bull.
145
,
111563
.
doi: 10.1016/j.materresbull.2021.111563
.
Luo
T.
,
Sun
X.
,
Ma
D.
,
Wang
G.
,
Yang
F.
,
Zhang
Y.
,
Huang
H
,
Zhang
H.
,
Wang
J.
&
Peng
F.
2023a
Fabrication of TiO2/CdS heterostructure by soluble solid-State titanium-oxo-Clusters for fast photocatalytic degradation of tetracycline
.
J. Phys. Chem. C
127
(
3
),
1372
1380
.
doi: 10.1021/acs.jpcc.2c06101
.
Luo
J.
,
Wu
Y.
,
Jiang
M.
,
Zhang
A.
,
Chen
X.
,
Zeng
Y.
,
Wang
Y.
,
Zhao
Y.
&
Wang
G.
2023b
Novel ZnFe2O4/BC/ZnO photocatalyst for high-efficiency degradation of tetracycline under visible light irradiation
.
Chemosphere
311
,
137041
.
doi: 10.1016/j.chemosphere.2022.137041
.
Ma
J.
,
Tan
X.
,
Yu
T.
&
Li
X.
2016
Fabrication of g-C3N4/TiO2 hierarchical spheres with reactive {001} TiO2 crystal facets and its visible-light photocatalytic activity
.
Int. J. Hydrogen Energy
41
(
6
),
3877
3887
.
doi: 10.1016/j.ijhydene.2015.12.191
.
Ma
T.
,
Shen
Q.
,
Zhao
B.
,
Xue
J.
,
Guan
R.
,
Liu
X.
,
Jia
H.
&
Xu
B.
2019
Facile synthesis of Fe-doped g-C3N4 for enhanced visible-light photocatalytic activity
.
Inorg. Chem. Commun.
107
,
107451
.
doi: 10.1016/j.inoche.2019.107451
.
Majeed
I.
,
Ali
H.
,
Idrees
A.
,
Arif
A.
,
Ashraf
W.
,
Rasul
S.
,
Khan
M. A.
,
Nadeem
M. A.
&
Nadeem
M. A.
2022
Understanding the role of metal supported on TiO2 in photoreforming of oxygenates
.
Energy Adv.
11
,
842
867
.
doi: 10.1039/d2ya00110a
.
Martha
S.
,
Nashim
A.
&
Parida
K. M.
2013
Facile synthesis of highly active g-C3N4 for efficient hydrogen production under visible light
.
J. Mater. Chem. A
1
(
26
),
7816
7824
.
doi: 10.1039/c3ta10851a
.
Massoud
M. A.
,
Tarhini
A.
&
Nasr
J. A.
2009
Decentralized approaches to wastewater treatment and management: Applicability in developing countries
.
J. Environ. Manage.
90
(
1
),
652
659
.
doi: 10.1016/j.jenvman.2008.07.001
.
Mena
E.
,
Rey
A.
,
Acedo
B.
,
Beltrán
F. J.
&
Malato
S.
2012
On ozone-photocatalysis synergism in black-light induced reactions: Oxidizing species production in photocatalytic ozonation versus heterogeneous photocatalysis
.
Chem. Eng. J.
204–205
,
131
140
.
doi: 10.1016/j.cej.2012.07.076
.
Mirzaei
A.
,
Chen
Z.
,
Haghighat
F.
&
Yerushalmi
L.
2019
Magnetic fluorinated mesoporous g-C3N4 for photocatalytic degradation of amoxicillin: Transformation mechanism and toxicity assessment
.
Appl. Catal. B Environ.
242
,
337
348
.
doi: 10.1016/j.apcatb.2018.10.009
.
Mohamed
R. M.
,
Ismail
A. A.
&
Alhaddad
M.
2021
A novel design of porous Cr2O3@ZnO nanocomposites as highly efficient photocatalyst toward degradation of antibiotics: A case study of ciprofloxacin
.
Sep. Purif. Technol.
266
,
118588
.
doi: 10.1016/j.seppur.2021.118588
.
Mohtaram
M. S.
,
Sabbaghi
S.
,
Rasouli
J.
&
Rasouli
K.
2024
Photocatalytic degradation of tetracycline using a novel WO3–ZnO/AC under visible light irradiation: Optimization of effective factors by RSM-CCD
.
Environ. Pollut.
347
,
123746
.
doi: 10.1016/j.envpol.2024.123746
.
Moradi
M.
,
Hasanvandian
F.
,
Isari
A. A.
,
Hayati
F.
,
Kakavandi
B.
&
Setayesh
S. R.
2021
Cuo and ZnO co-anchored on g-C3N4 nanosheets as an affordable double Z-scheme nanocomposite for photocatalytic decontamination of amoxicillin
.
Appl. Catal. B Environ.
285
,
119838
.
doi: 10.1016/j.apcatb.2020.119838
.
Murillo-Sierra
J. C.
,
Maya-Treviño
M. D. L.
,
Nuñez-Salas
R. E.
,
Pino-Sandoval
D. A.
&
Hernández-Ramírez
A.
2022
Facile synthesis of ZnS/WO3 coupled photocatalyst and its application on sulfamethoxazole degradation
.
Ceram. Int.
48
(
10
),
13761
13769
.
doi: 10.1016/j.ceramint.2022.01.257
.
Nanografi
.
Available from: www.nanografi.com (accessed 5 May 2024)
.
Ning
P.
,
Chen
H.
,
Pan
J.
,
Liang
J.
,
Qin
L.
,
Chen
D.
&
Huang
Y.
2020
Surface defect-rich g-C3N4/TiO2 Z-scheme heterojunction for efficient photocatalytic antibiotic removal: Rational regulation of free radicals and photocatalytic mechanism
.
Catal. Sci. Technol.
10
(
24
),
8295
8304
.
doi: 10.1039/d0cy01564d
.
Niu
P.
,
Yin
L. C.
,
Yang
Y. Q.
,
Liu
G.
&
Cheng
H. M.
2014a
Increasing the visible light absorption of graphitic carbon nitride (Melon) photocatalysts by homogeneous self-modifi cation with nitrogen vacancies
.
Adv. Mater.
26
(
47
),
8046
8052
.
doi: 10.1002/adma.201404057
.
Niu
P.
,
Yang
Y.
,
Yu
J. C.
,
Liu
G.
&
Cheng
H. M.
2014b
Switching the selectivity of the photoreduction reaction of carbon dioxide by controlling the band structure of a g-C3N4 photocatalyst
.
Chem. Commun.
50
(
74
),
10837
10840
.
doi: 10.1039/c4cc03060e
.
Nivetha
M. S.
,
Kumar
J. V.
,
Ajarem
J. S.
,
Allam
A. A.
,
Manikandan
V.
,
Arulmozhi
R.
&
Abirami
N.
2022
Construction of SnO2/g-C3N4 an effective nanocomposite for photocatalytic degradation of amoxicillin and pharmaceutical effluent
.
Environ. Res.
209
,
112809
.
doi: 10.1016/j.envres.2022.112809
.
Núñez-Salas
R. E.
,
Hernández-Ramírez
A.
,
Santos-Lozano
V.
,
Hinojosa-Reyes
L.
,
Guzmán-Mar
J. L.
,
Gracia-Pinilla
M. A.
&
Maya-Treviño
M.
2021
Synthesis, characterization, and photocatalytic performance of FeTiO3/ZnO on ciprofloxacin degradation
.
J. Photochem. Photobiol. A Chem.
411
.
doi: 10.1016/j.jphotochem.2021.113186
.
O'Neal Tugaoen
H.
,
Garcia-Segura
S.
,
Hristovski
K.
&
Westerhoff
P.
2018
Compact light-emitting diode optical fiber immobilized TiO2 reactor for photocatalytic water treatment
.
Sci. Total Environ.
613–614
,
1331
1338
.
doi: 10.1016/j.scitotenv.2017.09.242
.
Panneri
S.
,
Ganguly
P.
,
Mohan
M.
,
Nair
B. N.
,
Mohamed
A. A. P.
,
Warrier
K. G.
&
Hareesh
U. S.
2016
Photo-regenerable, bifunctional granules of carbon doped g-C3N4 as adsorptive photocatalyst for the efficient removal of tetracycline antibiotic
.
doi: 10.1021/acssuschemeng.6b02383
.
Patnaik
S.
,
Sahoo
D. P.
&
Parida
K.
2021
Recent advances in anion doped g-C3N4 photocatalysts: A review
.
Carbon N. Y.
172
,
682
711
.
doi: 10.1016/j.carbon.2020.10.073
.
Pattanayak
D. S.
,
Pal
D.
,
Mishra
J.
&
Thakur
C.
2022
Noble metal–free doped graphitic carbon nitride (g-C3N4) for efficient photodegradation of antibiotics: Progress, limitations, and future directions
.
Environ. Sci. Pollut. Res.
no. 0123456789. doi: 10.1007/s11356-022-20170-9
.
Pattanayak
D. S.
,
Pal
D.
,
Mishra
J.
,
Thakur
C.
&
Wasewar
K. L.
2023
Doped graphitic carbon nitride (g-C3N4) catalysts for efficient photodegradation of tetracycline antibiotics in aquatic environments
.
Environ. Sci. Pollut. Res.
30
(
10
),
24919
24926
.
doi: 10.1007/s11356-022-19766-y
.
Perumal
K.
,
Shanavas
S.
,
Karthigeyan
A.
,
Ahamad
T.
,
Alshehri
S. M.
&
Murugakoothan
P.
2020
Hydrothermal assisted precipitation synthesis of highly stable g-C3N4 /BiOBr/CdS photocatalyst with enhanced visible light photocatalytic degradation of tetracycline
.
Diamond Relat. Mater.
110
,
108091
.
doi: 10.1016/j.diamond.2020.108091
.
Prabavathi
S. L.
,
Govindan
K.
,
Saravanakumar
K.
,
Jang
A.
&
Muthuraj
V.
2019
Construction of heterostructure CoWO4/g-C3N4 nanocomposite as an efficient visible-light photocatalyst for norfloxacin degradation
.
J. Ind. Eng. Chem.
80
,
558
567
.
doi: 10.1016/j.jiec.2019.08.035
.
Pudukudy
M.
,
Shan
S.
,
Miao
Y.
,
Gu
B.
&
Jia
Q.
2020
WO3 nanocrystals decorated Ag3PO4 tetrapods as an efficient visible-light responsive Z-scheme photocatalyst for the enhanced degradation of tetracycline in aqueous medium
.
Colloids Surfaces A Physicochem. Eng. Asp.
589
,
124457
.
doi: 10.1016/j.colsurfa.2020.124457
.
Qin
Y.
,
Li
H.
,
Lu
J.
,
Ma
C.
,
Liu
X
,
Meng
M.
&
Yan
Y.
2019
Fabrication of magnetic quantum dots modified Z-scheme Bi2O4/ g-C3N4 photocatalysts with superior hydroxyl radical productivity for the degradation of rhodamine B
.
Appl. Surf. Sci.
493
,
458
469
.
doi: 10.1016/j.apsusc.2019.06.290
.
Ragadhita
R.
,
Nandiyanto
A. B. D.
,
Sukmafitri
A.
,
Machmud
A.
&
Surachman
E.
2019
Techo-economic analysis for the production of titanium dioxide nanoparticle produced by liquid-phase synthesis method
.
J. Eng. Sci. Technol.
14
(
3
),
1639
1652
.
Ran
J.
,
Ma
T. Y.
,
Gao
G.
,
Du
X. W.
&
Qiao
S. Z.
2015
Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H2 production
.
Energy Environ. Sci.
8
(
12
),
3708
3717
.
doi: 10.1039/c5ee02650d
.
Rashid
J.
,
Abbas
A.
,
Chang
L. C.
,
Iqbal
A.
,
Haq
I. U.
,
Rehman
A.
,
Awan
S. U.
,
Arshad
M.
,
Rafique
M.
&
Barakat
M. A
2019
Butterfly cluster like lamellar BiOBr/TiO2 nanocomposite for enhanced sunlight photocatalytic mineralization of aqueous ciprofloxacin
.
Sci. Total Environ.
665
,
668
677
.
doi: 10.1016/j.scitotenv.2019.02.145
.
Ravichandran
K.
,
Suvathi
S.
,
Kavitha
P.
,
Kaleeswaran
B.
,
Vasuki
M.
,
Mahalakshmi
G.
&
Ayyanar
M.
2024
Photocatalytic dye decomposition by bio-enzyme enriched TiO2/ g-C3N4 nanocomposite and assessment of toxicity of resultant water using Catla catla fish
.
Biocatal. Agric. Biotechnol.
58
,
103135
.
doi: 10.1016/j.bcab.2024.103135
.
Rawool
S. A.
,
Pai
M. R.
,
Banerjee
A. M.
,
Nath
S.
,
Bapat
R. D.
,
Sharma
R. K.
,
Jagannath
Dutta
B.
,
Hassan
P. A.
&
Tripathi
A. K.
2023
Superior interfacial contact yields efficient electron transfer rate and enhanced solar photocatalytic hydrogen generation in M/g-C3N4 Schottky Junctions
.
ACS Appl. Mater. Interfaces
15
(
33
),
39926
39945
.
doi: 10.1021/acsami.3c05833
.
Reddy
K. R.
,
Reddy
C. V.
,
Nadagouda
M. N.
,
Shetti
N. P.
,
Jaesool
S.
&
Aminabhavi
T. M.
2019
Polymeric graphitic carbon nitride (g-C3N4)-based semiconducting nanostructured materials: Synthesis methods, properties and photocatalytic applications
.
J. Environ. Manage.
238
,
25
40
.
doi: 10.1016/j.jenvman.2019.02.075
.
Ren
Z.
,
Chen
F.
,
Wen
K.
&
Lu
J.
2020
Enhanced photocatalytic activity for tetracyclines degradation with Ag modified g-C3N4 composite under visible light
.
J. Photochem. Photobiol. A Chem.
389
,
112217
.
doi: 10.1016/j.jphotochem.2019.112217
.
Salim
N. E.
,
Nor
N. A. M.
,
Jaafar
J.
,
Ismail
A. F.
,
Qtaishat
M. R.
,
Matsuura
T.
,
Othman
M. H. D.
,
Rahman
M. A.
,
Aziz
F.
&
Yusof
N.
2019
Effects of hydrophilic surface macromolecule modifier loading on PES/O- g-C3N4 hybrid photocatalytic membrane for phenol removal
.
Appl. Surf. Sci.
465
,
180
191
.
doi: 10.1016/j.apsusc.2018.09.161
.
Salsabila
A.
&
Dani Nandiyanto
A. B.
2020
Engineering and economic evaluation of production of SnO2 nanoparticles by microwave-assisted green synthesis
.
Int. J. Energ.
5
(
2
),
25
31
.
doi: 10.47238/ijeca.v5i2.134
.
Saritha
P.
,
Aparna
C.
,
Himabindu
V.
&
Anjaneyulu
Y.
2007
Comparison of various advanced oxidation processes for the degradation of 4-chloro-2 nitrophenol
.
J. Hazard. Mater.
149
(
3
),
609
614
.
doi: 10.1016/j.jhazmat.2007.06.111
.
Shamilov
R. R.
,
Muzipov
Z. M.
,
Sagdeev
D. O.
,
Kholin
K. V.
,
Saifina
A. F.
,
Gubaidullin
A. T.
&
Galyametdinov
Y. G.
2023
Photocatalytic materials based on g-C3N4 obtained by the one-Pot calcination method
.
C-Journal Carbon Res.
9
(
3
).
doi: 10.3390/c9030085
.
Shen
B.
,
Hong
Z.
,
Chen
Y.
,
Lin
B.
&
Gao
B.
2014
Template-free synthesis of a novel porous g-C3N4 with 3D hierarchical structure for enhanced photocatalytic H2 evolution
.
Mater. Lett.
118
,
208
211
.
doi: 10.1016/j.matlet.2013.12.070
.
Shi
Y.
,
Liu
J.
,
Zhou
L
,
Yan
X.
,
Cai
F.
,
Luo
W.
,
Ren
M.
,
Liu
&
Yu
Y.
2020
Antibiotics in wastewater from multiple sources and surface water of the Yangtze River in Chongqing in China
.
Environ. Monit. Assess.
192
(
3
).
doi: 10.1007/s10661-020-8108-6
.
Shi
Y.
,
Li
L.
,
Xu
Z.
,
Sun
H.
,
Guo
F.
&
Shi
W.
2021a
One-step simple green method to prepare carbon-doped graphitic carbon nitride nanosheets for boosting visible-light photocatalytic degradation of tetracycline
.
J. Chem. Technol. Biotechnol.
96
(
11
),
3122
3133
.
doi: 10.1002/jctb.6864
.
Shi
M.
,
Li
W.
,
Wang
Q.
,
Xu
H.
,
Zhao
Y.
,
He
G.
,
Meng
Q.
&
Chen
H.
2021b
One-step hydrothermal synthesis of BiVO4/TiO2/RGO composite with effective photocatalytic performance for the degradation of ciprofloxacin
.
Opt. Mater. (Amst)
122
,
111726
.
doi: 10.1016/j.optmat.2021.111726
.
Shi
Y.
,
Li
L.
,
Xu
Z
,
Sun
H.
,
Amin
S.
,
Guo
F.
,
Shi
W.
&
Li
Y.
2022
Engineering of 2D/3D architectures type II heterojunction with high-crystalline g-C3N4 nanosheets on yolk-shell ZnFe2O4 for enhanced photocatalytic tetracycline degradation
.
Mater. Res. Bull.
150
,
111789
.
doi: 10.1016/j.materresbull.2022.111789
.
Shi
K. X.
,
Qiu
F.
,
Wang
J. W.
,
Wang
P.
,
Li
H. Y.
&
Wang
C. C.
2023
Sulfamethoxazole degradation via peroxydisulfate activation over WO3/MIL-100(Fe) under low power LED visible light
.
Sep. Purif. Technol.
309
,
122991
.
doi: 10.1016/j.seppur.2022.122991
.
Sigmaaldrich
.
Available from: www.sigmaaldrich.com (accessed 5 May 2024)
.
Song
Y.
,
Qi
J.
,
Tian
J.
,
Gao
S.
&
Cui
F.
2018a
Construction of Ag/g-C3N4 photocatalysts with visible-light photocatalytic activity for sulfamethoxazole degradation
.
Chem. Eng. J.
341
,
547
555
.
doi: 10.1016/j.cej.2018.02.063
.
Song
Y.
,
Qi
J.
,
Tian
J.
,
Gao
S.
&
Cui
F.
2018b
Construction of photocatalysts with photocatalytic activity for sulfamethoxazole degradation
.
Chem. Eng. J.
.
doi: 10.1016/j.cej.2018.02.063
.
Sraw
A.
,
Kaur
T.
,
Pandey
Y.
,
Sobti
A.
,
Wanchoo
R. K.
&
Toor
A. P.
2018
Fixed bed recirculation type photocatalytic reactor with TiO2 immobilized clay beads for the degradation of pesticide polluted water
.
J. Environ. Chem. Eng.
6
(
6
),
7035
7043
.
doi: 10.1016/j.jece.2018.10.062
.
Stange
C.
,
Sidhu
J. P. S.
,
Toze
S.
&
Tiehm
A.
2019
Comparative removal of antibiotic resistance genes during chlorination, ozonation, and UV treatment
.
Int. J. Hyg. Environ. Health
222
(
3
),
541
548
.
doi: 10.1016/j.ijheh.2019.02.002
.
Starukh
H.
&
Praus
P.
2020
Doping of graphitic carbon nitride with non-metal elements and its applications in photocatalysis
.
Catalysts
10
(
10
),
1
38
.
doi: 10.3390/catal10101119
.
Sun
S.
,
Li
S.
,
Hao
Y.
,
Yang
X.
&
Dou
X.
2022a
Construction of g-C3N4 -ZnO composites with enhanced visible-light photocatalytic activity for degradation of amoxicillin
.
Korean J. Chem. Eng.
39
(
12
),
3377
3388
.
doi: 10.1007/s11814-022-1181-5
.
Sun
Q.
,
Sun
Y.
,
Zhou
M.
,
Cheng
M.
,
Chen
H.
,
Dorus
B.
,
Lu
M.
&
Le
T.
2022b
A 2D/3D g-C3N4/ZnO heterojunction enhanced visible-light driven photocatalytic activity for sulfonamides degradation
.
Ceram. Int.
48
(
5
),
7283
7290
.
doi: 10.1016/j.ceramint.2021.11.289
.
Tahereh Mahvelati-Shamsabadi
B.-K. L.
2020
Photocatalytic H2 evolution and CO2 reduction over phosphorus-doped g-C3N4 nanostructures: Electronic, optical, and surface properties
.
Renewable Sustainable Energy Rev.
130
,
109957
.
doi: 10.1016/j.rser.2020.109957
.
Tashkandi
N. Y.
,
Albukhari
S. M.
&
Ismail
A. A.
2022a
Mesoporous TiO2 enhanced by anchoring Mn3O4 for highly efficient photocatalyst toward photo-oxidation of ciprofloxacin
.
Opt. Mater. (Amst)
127
,
112274
.
doi: 10.1016/j.optmat.2022.112274
.
Tashkandi
N. Y.
,
Albukhari
S. M.
&
Ismail
A. A.
2022b
Visible-light driven of heterostructured LaFeO3/TiO2 photocatalysts for degradation of antibiotics: Ciprofloxacin as case study
.
J. Photochem. Photobiol. A Chem.
432
,
114078
.
doi: 10.1016/j.jphotochem.2022.114078
.
Thang
N. Q.
,
Sabbah
A.
,
Chen
L. C.
,
Chen
K. H.
,
Thi
C. M.
&
Van Viet
P.
2021
High-efficient photocatalytic degradation of commercial drugs for pharmaceutical wastewater treatment prospects: A case study of Ag/ g-C3N4/ZnO nanocomposite materials
.
Chemosphere
282
,
130971
.
doi: 10.1016/j.chemosphere.2021.130971
.
Tung
M. H. T.
,
Phuong
T. T. T.
,
Chi
N. T. P. L.
,
The
D. M.
,
Quoc
N. T.
,
Khan
D. T.
,
Pham
T.-D.
,
Khoa
N. V.
,
Hien
T. T. T.
&
Cam
N. T. D.
2023
Novel amoxicillin degradation via photocatalysis of WO3/AgI heterojunction decorated on rGO
.
Ceram. Int.
49
(
7
),
10881
10888
.
doi: 10.1016/j.ceramint.2022.11.281
.
Tsihrintzis
V. A.
2017
The use of vertical flow constructed wetlands in wastewater treatment
.
Water Resour. Manage.
31
(
10
),
3245
3270
.
doi: 10.1007/s11269-017-1710-x
.
Tung
M. H. T.
,
Phuong
T. T. T.
,
Tram
D. M., N.
,
The
D. M.
,
Mai
N. V. N.
,
Hien
T. T. T.
,
Nhung
L. T. C.
,
Binh
N. T.
,
Hoang
C. V.
,
Nhiem
D. N.
,
Pham
T.-D.
Khoa
N. V.
&
Cam
N. T. D.
2022
Novel degradation of amoxicillin by WO3/Ag3VO4 Z-scheme heterojunction deposited on rGO
.
Diam. Relat. Mater.
121
,
108788
.
doi: 10.1016/j.diamond.2021.108788
.
Van Thuan
D.
,
Nguyen
T. B. H.
,
Pham
T. H.
,
Kim
J.
,
Chu
T. T. H.
,
Nguyen
M. V.
,
Nguyen
K. D.
,
Al-onazi
W. A.
&
Elshikh
M. S.
2022
Photodegradation of ciprofloxacin antibiotic in water by using ZnO-doped g-C3N4 photocatalyst
.
Chemosphere
308
,
136408
.
doi: 10.1016/j.chemosphere.2022.136408
.
Vasilchenko
D.
,
Zhurenok
A.
,
Saraev
A.
,
Gerasimov
E.
,
Cherepanova
S.
,
Tkachev
Plusnin
P.
&
Kozlova
E.
2022
Highly efficient hydrogen production under visible light over g-C3N4-based photocatalysts with low platinum content
.
Chem. Eng. J.
445
,
136721
.
doi: 10.1016/j.cej.2022.136721
.
Viet
N. M.
,
Trung
D. Q.
,
Giang
B. L.
,
Tri
N. L. M.
,
Thao
P.
,
Pham
T. H.
,
Kamand
F. Z.
&
Al Tahtamouni
T. M.
2019
Noble metal -doped graphitic carbon nitride photocatalyst for enhancement photocatalytic decomposition of antibiotic pollutant in wastewater under visible light
.
J. Water Process Eng.
32
,
100954
.
doi: 10.1016/j.jwpe.2019.100954
.
Vinesh
V.
,
Preeyanghaa
M.
,
Kumar
T. R. N.
,
Ashokkumar
M.
,
Bianchi
C. L.
&
Neppolian
B.
2022
Revealing the stability of CuWO4/g-C3N4 nanocomposite for photocatalytic tetracycline degradation from the aqueous environment and DFT analysis
.
Environ. Res.
207
,
112112
.
doi: 10.1016/j.envres.2021.112112
.
Wang
W.
,
Yu
J. C.
,
Shen
Z.
,
Chan
D. K. L.
&
Gu
T.
2014
G-C3N4 quantum dots: Direct synthesis, upconversion properties and photocatalytic application
.
Chem. Commun.
50
(
70
),
10148
10150
.
doi: 10.1039/c4cc02543a
.
Wang
X.
,
Sun
G.
,
Li
N.
&
Chen
P.
2016a
Quantum dots derived from two-dimensional materials and their applications for catalysis and energy
.
Chem. Soc. Rev.
45
(
8
),
2239
2262
.
doi: 10.1039/c5cs00811e
.
Wang
T.
,
Quan
W.
,
Jiang
D.
,
Chen
L.
,
Li
D.
,
Meng
S.
&
Chen
M.
2016b
Synthesis of redox-mediator-free direct Z-scheme AgI/WO3 nanocomposite photocatalysts for the degradation of tetracycline with enhanced photocatalytic activity
.
Chem. Eng. J.
300
,
280
290
.
doi: 10.1016/j.cej.2016.04.128
.
Wang
X.
,
Liu
Q.
,
Yang
Q.
,
Zhang
Z.
&
Fang
X.
2018b
Three-dimension g-C3N4 aggregate composed of hollow bubbles with high activity for photocatalytic degradation of tetracycline
.
Carbon N. Y.
136
,
103
112
.
doi: 10.1016/j.carbon.2018.04.059
.
Wang
Y.
,
Zhuo
S.
,
Zhang
Y.
,
Fang
J.
,
Zhou
Y.
,
Yuan
S.
,
Zhang
C.
&
Chen
W.
2018c
One-pot synthesis of K-doped g-C3N4 nanosheets with enhanced photocatalytic hydrogen production under visible-light irradiation
.
Appl. Surf. Sci.
440
,
258
265
.
doi: 10.1016/j.apsusc.2018.01.091
.
Wang
M.
,
Guo
P.
,
Zhang
Y.
,
Liu
T.
,
Li
S.
,
Xie
Y.
,
Wang
Y.
&
Zhu
T.
2018d
Eu doped g-C3N4 nanosheet coated on flower-like BiVO4 powders with enhanced visible light photocatalytic for tetracycline degradation
.
Appl. Surf. Sci.
453
,
11
22
.
doi: 10.1016/j.apsusc.2018.05.084
.
Wang
W.
,
Zeng
Z.
,
Zeng
G.
,
Zhang
C.
,
Xiao
R.
,
Zhou
C.
,
Xiong
W.
,
Yang
Y.
,
Lei
L.
,
Liu
Y.
,
Huang
D.
,
Cheng
M.
,
Yang
Y.
,
Fu
Y.
,
Luo
H.
&
Yin
Z.
2019
Sulfur doped carbon quantum dots loaded hollow tubular g-C3N4 as novel photocatalyst for destruction of Escherichia coli and tetracycline degradation under visible light
.
Chem. Eng. J.
378
,
122132
.
doi: 10.1016/j.cej.2019.122132
.
Wang
X.
,
Han
D.
,
Ding
Y.
,
Liu
J.
,
Cai
H.
,
Jia
L.
,
Cheng
X.
,
Wang
J.
&
Fan
X.
2020
A low-cost and high-yield approach for preparing g-C3N4 with a large specific surface area and enhanced photocatalytic activity by using formaldehyde-treated melamine
.
J. Alloys Compd.
845
,
156293
.
doi: 10.1016/j.jallcom.2020.156293
.
Wang
G.
,
Li
Y.
,
Dai
J.
&
Deng
N.
2022
Highly efficient photocatalytic oxidation of antibiotic ciprofloxacin using TiO2@ g-C3N4@biochar composite
.
Environ. Sci. Pollut. Res.
29
(
32
),
48522
48538
.
doi: 10.1007/s11356-022-19269-w
.
Wang
X.
,
Niu
J.
,
Yang
L.
,
Guo
X.
,
Yu
X.
&
Yao
B.
2023a
Recent advances on g-C3N4 based photocatalysts for typical antibiotics photodegradation: Preparation, mechanism and influencing factors
.
ChemistrySelect
8
(
47
).
doi: 10.1002/slct.202301936
.
Wang
S.
,
Hou
M.
,
Fu
H.
,
Ruan
Z.
,
Sun
T.
,
Zhu
Y.
,
Wang
L.
,
Wang
Y.
&
Zhang
S.
2023b
Synthesis of ultrathin porous g-C3N4 nanofilm via template-free method for photocatalytic degradation of tetracycline
.
J. Alloys Compd.
939
,
168738
.
doi: 10.1016/j.jallcom.2023.168738
.
Watkinson
A. J.
,
Murby
E. J.
,
Kolpin
D. W.
&
Costanzo
S. D.
2009
The occurrence of antibiotics in an urban watershed: From wastewater to drinking water
.
Sci. Total Environ.
407
(
8
),
2711
2723
.
doi: 10.1016/j.scitotenv.2008.11.059
.
Wen
J.
,
Xie
J.
,
Chen
X.
&
Li
X.
2017
A review on g-C3N4-based photocatalysts
.
Appl. Surf. Sci.
391
,
72
123
.
doi: 10.1016/j.apsusc.2016.07.030
.
Wu
F.
,
Liu
Y.
,
Yu
G.
,
Shen
D.
,
Wang
Y.
&
Kan
E.
2012
Visible-light-absorption in graphitic g-C3N4 bilayer: Enhanced by interlayer coupling
.
J. Phys. Chem. Lett.
3
(
22
),
3330
3334
.
doi: 10.1021/jz301536k
.
Wu
K.
,
Chen
D.
,
Fang
J
,
Wu
S.
,
Yang
F.
,
Zhu
X.
&
Fang
Z.
2018
One-step synthesis of sulfur and tungstate co-doped porous g-C3N4 microrods with remarkably enhanced visible-light photocatalytic performances
.
Appl. Surf. Sci.
.
doi: 10.1016/j.apsusc.2018.07.221
.
Wu
Z.
,
Tong
Z.
,
Xie
Y.
,
Sun
H.
,
Gong
X.
,
Qin
P.
,
Liang
Y.
,
Yuan
X.
,
Zou
D.
&
Jiang
L.
2022
Efficient degradation of tetracycline by persulfate activation with Fe, Co and O co − doped g − C3N4: Performance, mechanism and toxicity
.
Chem. Eng. J.
434
(
January
),
134732
.
doi: 10.1016/j.cej.2022.134732
.
Xia
Y. M.
,
Chu
S. P.
,
Liao
Z. Y.
,
Sun
S. Y.
,
Cheng
X.
&
Gao
W. W.
2020a
Z-Scheme mechanism study of ternary BiPO4/reduced graphene oxide/protonated g-C3N4 photocatalyst with interfacial electric field mediating for the effective photocatalytic degradation of tetracycline
.
J. Mater. Sci. Mater. Electron.
31
(
17
),
14886
14900
.
doi: 10.1007/s10854-020-04050-x
.
Xiao
J.
,
Xie
Y.
&
Cao
H.
2015
Organic pollutants removal in wastewater by heterogeneous photocatalytic ozonation
.
Chemosphere
121
,
1
17
.
doi: 10.1016/j.chemosphere.2014.10.072
.
Xiao
F.
,
Xu
J.
,
Cao
L.
,
Jiang
S.
,
Zhang
Q.
&
Wang
L.
2020
In situ hydrothermal fabrication of visible light-driven g-C3N4/SrTiO3 composite for photocatalytic degradation of TC
.
Environ. Sci. Pollut. Res.
27
(
6
),
5788
5796
.
doi: 10.1007/s11356-019-07060-3
.
Xie
R.
,
Song
Y.
,
Wang
F.
,
Li
J.
,
Zhang
X.
&
Zou
H.
2024
Detection and elimination of tetracycline: Constructing multi-mode carbon dots for ultra-sensitive visual assay and CDs/TiO2 for photocatalytic degradation
.
Appl. Surf. Sci.
648
,
158990
.
doi: 10.1016/j.apsusc.2023.158990
.
Xiong
J.-Q.
,
Govindwar
S.
,
Kurade
M. B.
,
Paeng
K.-J.
,
Roh
H.-S.
,
Khan
M. A.
&
Jeon
B.-H.
2019
Chemosphere toxicity of sulfamethazine and sulfamethoxazole and their removal by a green microalga, Scenedesmus obliquus
.
Chemosphere
218
,
551
558
.
doi: 10.1016/j.chemosphere.2018.11.146
.
Xu
B.
,
Ahmed
M. B.
,
Zhou
J. L.
,
Altaee
A.
,
Xu
G.
&
Wu
M.
2018a
Graphitic carbon nitride based nanocomposites for the photocatalysis of organic contaminants under visible irradiation: Progress, limitations and future directions
.
Sci. Total Environ.
633
,
546
559
.
doi: 10.1016/j.scitotenv.2018.03.206
.
Xu
Y.
,
Ge
F.
,
Chen
Z.
,
Huang
S.
,
Wei
W.
,
Xie
M.
,
Xu
H.
&
Li
H.
2018b
One-step synthesis of Fe-doped surface-alkalinized g-C3N4 and their improved visible-light photocatalytic erformance
.
Appl. Surf. Sci.
doi: 10.1016/j.apsusc.2018.11.062
.
Xu
Y.
,
Liang
Y.
,
Yuai
Z.
,
Long
H.
,
He
Q.
,
Guo
K.
,
Zhang
Y.
,
Chen
D.
,
Xu
X.
&
Hu
H.
2022
Co-doping g-C3N4 with P and Mo for efficient photocatalytic tetracycline degradation under visible light
.
Ceram. Int.
48
(
17
),
24677
24686
.
doi: 10.1016/j.ceramint.2022.05.114
.
Yan
W.
,
Zhang
R.
,
Ji
F.
&
Jing
C.
2020
Deciphering co-catalytic mechanisms of potassium doped g-C3N4 in Fenton process
.
J. Hazard. Mater.
392
,
122472
.
doi: 10.1016/j.jhazmat.2020.122472
.
Yan
F.
,
An
L.
,
Xu
X.
,
Du
W.
&
Dai
R.
2024
A review of antibiotics in surface water and their removal by advanced electrocoagulation technologies
.
Sci. Total Environ.
906
,
167737
.
doi: 10.1016/j.scitotenv.2023.167737
.
Yang
S.
,
Gong
Y.
,
Zhang
J.
,
Zhan
L.
,
Ma
L.
,
Fang
Z.
,
Vajtai
R.
,
Wang
X.
&
Ajayan
P. M.
2013
Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light
.
Adv. Mater.
25
(
17
),
2452
2456
.
doi: 10.1002/adma.201204453
.
Yang
Z.
,
Li
L.
,
Yu
H.
,
Liu
M.
,
Chi
Y.
,
Sha
J.
&
Xu
S.
2021
Facile synthesis of highly crystalline g-C3N4 nanosheets with remarkable visible light photocatalytic activity for antibiotics removal
.
Chemosphere
271
.
doi: 10.1016/j.chemosphere.2020.129503
.
Yang
X.
,
Chen
Z.
,
Xu
J.
,
Tang
H.
,
Chen
K.
&
Jiang
Y.
2015
Tuning the morphology of g-C3N4 for improvement of Z-scheme photocatalytic water oxidation
.
ACS Appl. Mater. Interfaces
7
(
28
),
15285
15293
.
doi: 10.1021/acsami.5b02649
.
Yang
L.
,
Liu
X.
,
Liu
Z.
,
Wang
C.
,
Liu
G.
,
Li
Q.
&
Feng
X.
2018
Enhanced photocatalytic activity of g-C3N4 2D nanosheets through thermal exfoliation using dicyandiamide as precursor
.
Ceram. Int.
44
(
17
),
20613
20619
.
doi: 10.1016/j.ceramint.2018.06.105
.
Yao
J.
,
Fu
X.
,
Chen
H.
&
Tang
R.
2023
Fabrication of oxygen g-C3N4 through the formation of a supramolecular precursor for the enhanced photocatalytic degradation of sulfonamides
.
J. Chem. Technol. Biotechnol.
98
(
2
),
431
441
.
doi: 10.1002/jctb.7254
.
Yu
J.
,
Wang
S.
,
Low
J.
&
Xiao
W.
2013
Enhanced photocatalytic performance of direct Z-scheme g-C3N4 -TiO2 photocatalysts for the decomposition of formaldehyde in air
.
Phys. Chem. Chem. Phys.
15
(
39
),
16883
16890
.
doi: 10.1039/c3cp53131 g
.
Yu
Q.
,
Dai
Y.
,
Ling
Y.
,
Wu
Q.
,
Zhang
Z.
&
Feng
B.
2022
Z-scheme heterojunction WO3/BiOBr supported-single Fe atom for ciprofloxacin degradation via visible-light photocatalysis
.
J. Environ. Chem. Eng.
10
(
6
),
108693
.
doi: 10.1016/j.jece.2022.108693
.
Zarei-Baygi
A.
,
Harb
M.
,
Wang
P.
,
Stadler
L. B.
&
Smith
A. L.
2019
Evaluating antibiotic resistance gene correlations with antibiotic exposure conditions in anaerobic membrane bioreactors
.
Environ. Sci. Technol.
53
(
7
),
3599
3609
.
doi: 10.1021/acs.est.9b00798
.
Zeinali Heris
S.
,
Etemadi
M.
,
Mousavi
S. B.
,
Mohammadpourfard
M.
&
Ramavandi
B.
2023
Preparation and characterizations of TiO2/ZnO nanohybrid and its application in photocatalytic degradation of tetracycline in wastewater
.
J. Photochem. Photobiol. A Chem.
443
,
114893
.
doi: 10.1016/j.jphotochem.2023.114893
.
Zhan
X.
,
Zeng
Y.
,
Zhang
Z.
,
Xia
Y.
,
Xu
J.
,
Hong
B.
&
Wang
X.
2023
g-C3N4 with gradient vacancies to enhance spatial charge carriers transfer and separation for photodegrading antibiotics under visible light
.
Chem. Eng. J.
474
(
August
),
145948
.
doi: 10.1016/j.cej.2023.145948
.
Zhang
X.
,
Xie
X.
,
Wang
H.
,
Zhang
J.
,
Pan
B.
&
Xie
Y.
2013
Enhanced photoresponsive ultrathin graphitic-phase g-C3N4 nanosheets for bioimaging
.
J. Am. Chem. Soc.
135
(
1
),
18
21
.
doi: 10.1021/ja308249k
.
Zhang
D. Q.
,
Jinadasa
K. B. S. N.
,
Gersberg
R. M.
,
Liu
Y.
,
Ng
W. J.
&
Tan
S. K.
2014
Application of constructed wetlands for wastewater treatment in developing countries – A review of recent developments (2000–2013)
.
J. Environ. Manage.
141
,
116
131
.
doi: 10.1016/j.jenvman.2014.03.015
.
Zhang
H.
,
Guo
L. H.
,
Zhao
L.
,
Wan
B.
&
Yang
Y.
2015
Switching oxygen reduction pathway by exfoliating graphitic carbon nitride for enhanced photocatalytic phenol degradation
.
J. Phys. Chem. Lett.
6
(
6
),
958
963
.
doi: 10.1021/acs.jpclett.5b00149
.
Zhang
S.
,
Gu
P.
,
Ma
R.
,
Luo
C.
,
Wen
T.
,
Zhao
G.
,
Cheng
W.
&
Wang
X.
2018
Recent developments in fabrication and structure regulation of visible-light-driven g-C3N4-based photocatalysts towards water puri fi cation : A critical review
.
Catal. Today
0
1
.
doi: 10.1016/j.cattod.2018.09.013
.
Zhang
H.
,
Wu
W.
,
Li
Y.
,
Wang
Y.
,
Zhang
C.
,
Zhang
W.
,
Wang
L.
&
Niu
L.
2019a
Enhanced photocatalytic degradation of ciprofloxacin using novel C-dot@Nitrogen deficient g-C3N4: Synergistic effect of nitrogen defects and C-dots
.
Appl. Surf. Sci.
465
,
450
458
.
doi: 10.1016/j.apsusc.2018.09.183
.
Zhang
S.
,
Song
S.
,
Gu
P.
,
Ma
R.
,
Wei
D.
,
Zhao
G.
,
Wen
T.
,
Jehan
R.
,
Hu
B.
&
Wang
X.
2019b
Visible-light-driven activation of persulfate over cyano and hydroxyl group co-modified mesoporous g-C3N4 for boosting bisphenol A degradation
.
J. Mater. Chem. A
7
(
10
),
5552
5560
.
doi: 10.1039/c9ta00339h
.
Zhang
M.
,
Lai
C.
,
Li
B.
,
Xu
F.
,
Huang
D.
,
Liu
S.
,
Qin
L.
,
Fu
Y.
,
Liu
X.
,
Yi
H.
,
Zhang
Y.
,
He
J.
&
Chen
L.
2020
Unravelling the role of dual quantum dots cocatalyst in 0D/2D heterojunction photocatalyst for promoting photocatalytic organic pollutant degradation
.
Chem. Eng. J.
396
,
125343
.
doi: 10.1016/j.cej.2020.125343
.
Zhang
M.
,
Yang
Y.
,
An
X.
&
Hou
L.
2021
A critical review of g-C3N4-based photocatalytic membrane for water purification
.
Chem. Eng. J.
412
,
128663
.
doi: 10.1016/j.cej.2021.128663
.
Zhang
C.
,
Ouyang
Z.
,
Yang
Y.
,
Long
X.
,
Qin
L.
,
Wang
W.
,
Zhou
Y.
,
Qin
D.
,
Qin
F.
&
Lai
C.
2022a
Molecular engineering of donor-acceptor structured g-C3N4 for superior photocatalytic oxytetracycline degradation
.
Chem. Eng. J.
448
,
137370
.
doi: 10.1016/j.cej.2022.137370
.
Zhang
J.
,
Zhang
W.
,
Yue
L.
,
Hu
X.
,
Lin
H.
,
Zhao
L.
&
He
Y.
2022b
Thiophene insertion and lanthanum molybdate modification of g-C3N4 for enhanced visible-light-driven photoactivity in tetracycline degradation
.
Appl. Surf. Sci.
592
,
153337
.
doi: 10.1016/j.apsusc.2022.153337
.
Zhang
J.
,
Gou
S.
,
Yang
Z.
,
Li
C.
&
Wang
W.
2024
Photocatalytic degradation of sulfamethoxazole over S-scheme Fe2O3/ g-C3N4 photocatalyst under visible light
.
Water Cycle
5
,
1
8
.
doi: 10.1016/j.watcyc.2023.11.001
.
Zhao
Y.
,
Zhao
F.
,
Wang
X.
,
Xu
C.
,
Zhang
Z.
,
Shi
G.
&
Qu
L.
2014
Graphitic carbon nitride nanoribbons: Graphene-assisted formation and synergic function for highly efficient hydrogen evolution
.
Angew. Chemie. Int. Ed.
53
(
50
),
13934
13939
.
doi: 10.1002/anie.201409080
.
Zheng
S.
,
Cui
C.
,
Liang
Q.
,
Xia
X.
&
Yang
F.
2010
Ozonation performance of WWTP secondary effluent of antibiotic manufacturing wastewater
.
Chemosphere
81
(
9
),
1159
1163
.
doi: 10.1016/j.chemosphere.2010.08.058
.
Zhou
J.
,
Luo
H.
,
Ding
R.
,
Xin
C.
,
Zhou
X.
,
Chen
Q.
&
Jiang
F.
2020a
Enhanced visible light photocatalytic degradation of sulfamethazine over a S/Gd co-doped graphitic carbon nitride photocatalyst
.
Colloids Surfaces A Physicochem. Eng. Asp.
585
,
123853
.
doi: 10.1016/j.colsurfa.2019.123853
.
Zhu
Z.
,
Tang
X.
,
Fan
W.
,
Liu
Z.
,
Huo
P.
,
Wang
T.
,
Yan
Y.
&
Li
C.
2019
Studying of Co-doped g-C3N4 and modified with Fe3O4 quantum dots on removing tetracycline
.
J. Alloys Compd.
775
,
248
258
.
doi: 10.1016/j.jallcom.2018.10.056
.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).