The efficiency of UV-activated sodium percarbonate (SPC) and sodium hypochlorite (SHC) in Norfloxacin (Norf) removal from an aqueous solution was assessed. Control experiments were conducted and the synergistic effect of the UV-SHC and UV-SPC processes were 0.61 and 2.89, respectively. According to the first-order reaction rate constants, the process rates were ranked as UV-SPC > SPC > UV and UV-SHC > SHC > UV. Central composite design was applied to determine the optimum operating conditions for maximum Norf removal. Under optimum conditions (UV-SPC: 1 mg/L initial Norf, 4 mM SPC, pH 3, 50 min; UV-SHC: 1 mg/L initial Norf, 1 mM SHC, pH 7, 8 min), the removal yields for the UV-SPC and UV-SHC were 71.8 and 72.1%, respectively. HCO3, Cl, NO3, and SO42− negatively affected both processes. UV-SPC and UV-SHC processes were effective for Norf removal from aqueous solution. Similar removal efficiencies were obtained with both processes; however, this removal efficiency was achieved in a much shorter time and more economically with the UV-SHC process.

  • The process rates in the UV-SPC and UV-SHC processes were higher than in single processes.

  • Norfloxacin removal by the UV-SPC and UV-SHC was 71.8 and 72.1%, respectively.

  • HCO3, Cl, NO3, and SO42− negatively affected both processes.

  • UV-SHC is more energy efficient.

This content is only available as a PDF.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).

Supplementary data